
Understanding
Malware

2015/08/14 Security Camp 2015 13-D, 14-D

JPCERT/CC Analysis Center
You NAKATSURU

Copyright©2015 JPCERT/CC All rights reserved.1

Notice

These training materials are used for "Security Camp
2015" in Japan
—Security training program for students to discover &

nurture young talent
—https://www.ipa.go.jp/jinzai/camp/ (Japanese only)

The training course consists of the following 2 parts
—Malware, Malware analysis basics, Static analysis basics

Learning basic knowledge for malware analysis
—Malware analysis

Understanding details of malware samples using static
analysis method

The training mainly focuses on 32bit Windows malware
Some slides have display problems due to animation
Any questions and comments are welcome
—Please contact us at aa-info@jpcert.or.jp

https://www.ipa.go.jp/jinzai/camp/
mailto:aa-info@jpcert.or.jp

Copyright©2015 JPCERT/CC All rights reserved.2

Agenda
Basic Knowledge
Malware Analysis
—Simple HTTP Bot
—Banking Trojan

Bonus
—Shellcode
—MWS Cup

Discussion

Copyright©2015 JPCERT/CC All rights reserved.3

Objectives of This Session

• Windows features used by malware
• Implementation of "real" malware

• HTTP Bot
• Banking Trojan

Understanding malware

• Difficulties and Challenges

Understanding static analysis

Windows
Malware Analysis

Copyright©2015 JPCERT/CC All rights reserved.5

(recap) Malware Analysis Flow

End

Yes

No

Yes

No

Surface
analysis

Runtime
analysis

Static
analysis

enough? enough?

Summarize
Result

Start

Copyright©2015 JPCERT/CC All rights reserved.6

(recap) Analysis Process Comparison
Surface
analysis

Runtime
analysis

Static
analysis

Overview

Retrieve surface
information from
targets without
execution

Execute
samples and
monitor its
behavior

Read codes in
binary files and
understand its
functionality

Output

- Hash values
- Strings
- File attributes
- Packer info
- Anti-virus

detection info

Activity of
- File system
- Registry
- Process
- Network

Malware’s
functionality
e.g.
- Bot commands
- Encode/decode

methods

Security
risk Low High Moderate

Analysis
coverage Low Moderate High

Copyright©2015 JPCERT/CC All rights reserved.7

(recap) Static Analysis Tools
Category Name Description

Disassembler IDA Disassembles more than
50 architectures

Decompiler

Hex-rays
Decompiler

x86/ARM binary to C
source code

VB
Decompiler

Visual Basic binary to
Visual Basic source code

.NET
Reflector

.NET binary to .NET
source code

Debugger
OllyDbg World famous X86

debugger
Immunity
Debugger

Python familiar x86
debugger

Copyright©2015 JPCERT/CC All rights reserved.8

BASIC KNOWLEDGE

Copyright©2015 JPCERT/CC All rights reserved.9

PE (Portable Executable) File Format

https://msdn.microsoft.com/en-
us/windows/hardware/gg463119.aspx
Consists of headers and multiple sections, will be
extended on memory
—Header: File Information

Entry point
Timestamp
Section’s info
etc.

—Section: Byte code, data

PE header

Section 1
.text (code)

Section 2
.rdata (data)

Section 3
.data (data)

https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx

Copyright©2015 JPCERT/CC All rights reserved.10

EXE & DLL
"EXE" and "DLL" are 2 most common file types in
PE (Portable Executable) file format
—"Characteristics" of PE header

EXE DLL
File Format Portable Executable

Summary Independent
application file

Collection of functions as
shared library

Example explorer.exe, iexplore.exe kernel32.dll, shell32.dll

Execute
timing

• Main function
• when the file is

executed

• Main function
• when the DLL is

loaded/unloaded
• when a thread

start/exit
• Exported function

• when is called

Copyright©2015 JPCERT/CC All rights reserved.11

Process & Virtual Memory
4GB per process (32bit Windows)
—User space 2GB

allocated for each process, able to access each other
—Kernel space 2GB

shared with all processes

User space
• Application code
• Various DLL code
• Stack, Heap
• etc.

Kernel Space
• Windows kernel
• Device driver
• Page pool
• etc.

User space
• Application code
• Various DLL code
• Stack, Heap
• etc.

Process BProcess A
00000000

80000000

FFFFFFFF

Copyright©2015 JPCERT/CC All rights reserved.12

Finding Main Function
Windows executable binary file will be started
with initial processing to launch the process
To find main function

Understand its initialization routine
• Compile & Disassemble your program

Use tools
• OllyDbg / Immunity Debugger
• IDA Starter/Pro

Use your sixth sense
• Based on your experience

Copyright©2015 JPCERT/CC All rights reserved.13

Important Points

• Time is money
• Remember "efficient code analysis"

Do not read everything

• Wrap up analysis results for incident
response/information sharing
• Analysis report/note
• Commented IDB file

Analysis is not our purpose

Copyright©2015 JPCERT/CC All rights reserved.14

LET'S ANALYZE
SIMPLE HTTP BOT

Malware Analysis

Copyright©2015 JPCERT/CC All rights reserved.15

A kind of HTTP bot spread through mass emails

Analysis Target

malware_sample1.idb

Copyright©2015 JPCERT/CC All rights reserved.16

Exercise 1. Malware Analysis
i. Describe the following points of the target

—Details of each bot command
—Decode method

Try to decode malware_sample1_data.bin

ii. Make your IDB
—Fill in information that you analyzed

Copyright©2015 JPCERT/CC All rights reserved.17

Point 1. AutoRun Function
Want to launch after rebooting the OS
—Copy itself into start up folder
—Add a registry entry to AutoRun part

Registry entries related to AutoRun

HKCU¥SOFTWARE¥Microsoft¥Active Setup¥Installed Components

HKCU¥SOFTWARE¥Microsoft¥Windows
NT¥CurrentVersion¥Windows¥Run

HKCU¥SOFTWARE¥Microsoft¥Windows
NT¥CurrentVersion¥Winlogon¥Shell

HKCU¥SOFTWARE¥Microsoft¥Windows¥CurrentVersion¥Run

HKCU¥SOFTWARE¥Microsoft¥Windows¥CurrentVersion¥RunOnce

etc.

Copyright©2015 JPCERT/CC All rights reserved.18

Getting API address using GetProcAddress

Point 2. Hiding API name

Copyright©2015 JPCERT/CC All rights reserved.19

Point 3. HTTP Communication
There are many ways to communicate using HTTP

• InternetOpen, HttpSendRequest, ...

WinINet APIs

• socket, connect, send, recv, ...

WinSock APIs

• WinHttpConnect, WinHttpSendRequest, ...

WinHTTP APIs

• URLDownloadToFile, …

etc.

Copyright©2015 JPCERT/CC All rights reserved.20

Point 4. Encoding (Obfuscation)
Encode (encrypt) data to avoid being easily found
—Strings stored in the binary

File name, Registry entry name, Server address
—Packet

Various methods are available
Method Example

xor (exclusive or) 'a' ^ 0x05 = 'd'
ror/rol (rotate right/left) rol 'a', 1 = 0xC2

base64 -
RC4 -
AES -

Copyright©2015 JPCERT/CC All rights reserved.21

Point 4. Encoding (Obfuscation)
e.g. HTTP packet obfuscation
—Data encoded using "xor" or "ror/rol" may became

non-ASCII
—Combination with base64 encoding is a common

approach

xor/ror/rol encode

base64 encode

make text data

Send data

text data

binary data

text data

Copyright©2015 JPCERT/CC All rights reserved.22

Point 5. Bot command
Bots are capable to communicate with C&C
servers to get commands to work

compare

Receive
command

compare

compare

Information theft

Download & exec

Key logging

Remote shell

compare

Send results

match

match

match

match

Copyright©2015 JPCERT/CC All rights reserved.23

Exercise 1. Malware Analysis
i. Describe the following points of the target

—Details of each bot command
"upload_": Download file from arbitrary URL
"uploadexec_": Download & execute file
"xxx_": Execute arbitrary shell command
(Remote shell)
"xxxx_": Upload specific file to C&C server

—Decode method
Try to decode malware_sample1_data.bin
Wide char -> Multi byte char -> xor 0x53

ii. Make your IDB
—Fill in information that you analyzed

Copyright©2015 JPCERT/CC All rights reserved.24

LET'S ANALYZE
BANKING TROJAN

Malware Analysis

Copyright©2015 JPCERT/CC All rights reserved.25

Analysis Target
Dropper + Tinba

Drive-by-Download
attack

malware_sample3.idb

malware_sample2.idb

Copyright©2015 JPCERT/CC All rights reserved.26

Exercise 2. Malware Analysis
i. Analyze position independent data addressing in

"malware_sample3.idb"

ii. Analyze "malware_sample_clean.idb" and
describe the following points of the target
—How to avoid anti runtime analysis technique
—Installation flow
—Target web browser

iii. Make your IDB
—Fill in the information that you analyzed

Copyright©2015 JPCERT/CC All rights reserved.27

Create another file
—Dropped files usually contains the main function for

the attack
2 common methods

Point 1. Dropping Files

•Downloader

Download from the server

•Data / resource / overlay
•Usually encoded

Store drop files in programs

Copyright©2015 JPCERT/CC All rights reserved.28

Malware

Point 1. Dropping Files
Dropping file from resource

PE header

.code

.data

.rsrc

encoded
malware

decoded
malware

1. Find and load the encoded
data from resources
n FindResource
n LoadResource
n SizeofResource
n LockResource

2. Decode
n HeapAlloc
n RtlDecompressBuffer

3. Write decoded data to the file
n CreateFile
n WriteFile
n CloseHandle

main.exe

Copyright©2015 JPCERT/CC All rights reserved.29

Point 2. Position Independent Data Addressing

Push strings using CALL instruction

Push address of "ntdll" &
jump to next instruction

Copyright©2015 JPCERT/CC All rights reserved.30

Point 3. Anti Runtime Analysis
Some types of malware are clever enough to
detect analysis activity
—To avoid analysis by malware analysts

Debugger

Breakpoints

Exception
handling

Virtual
Machine

Interface

CPU
behavior

Support
tools

Analysis
tools

Window
name

Module
name

Others

Computer
name

Disk size

Cursor
position

Copyright©2015 JPCERT/CC All rights reserved.31

Point 4. Code Injection
Method to execute arbitrary code in another
process

Malware Target

malware.exe

target.exe

Open the target
process

DLLs DLLs

Write

codeCreate
remote thread

Copyright©2015 JPCERT/CC All rights reserved.32

Point 5. API Hooking
Method to execute arbitrary code when API is
called
—Logging/Modifying parameters passed to APIs

target.exe

DLLs

code

IAT

target.exe

DLLs

IAT

Before After

Copyright©2015 JPCERT/CC All rights reserved.33

Exercise 2. Malware Analysis
i. Analyze position independent data addressing in

"malware_sample3.idb"

ii. Analyze "malware_sample_clean.idb" and
describe the following points of the target
—How to avoid anti runtime analysis technique

Mouse cursor checking, Disk cylinder checking
—Installation flow

See "aa_install_as_speechengines" function
—Target web browser

Internet Explorer, Firefox, Chrome, Maxthon

iii. Make your IDB
—Fill in the information that you analyzed

Bonus:
Shellcode Analysis

Copyright©2015 JPCERT/CC All rights reserved.35

BASIC KNOWLEDGE

Copyright©2015 JPCERT/CC All rights reserved.36

(recap) Exploiting Vulnerability

Attack
Vulnerability

• Buffer overflow,
etc.

• Take control
and execute
arbitrary code

Execute
arbitrary

code

• Shellcode for
malware
execution

• Malware

Copyright©2015 JPCERT/CC All rights reserved.37

What Shellcode is
Code snippet that is executed after exploiting
e.g. Stack based buffer overflow + Heap spray

Stack
Memory

Stack

Application

Arguments

Old EBP

Vulnerable
function’s frame

nop
Shellcode

nop
Shellcode

Target nop
Shellcode

Return addressTarget Address

Copyright©2015 JPCERT/CC All rights reserved.38

Comparison With Executable File

Executable file Shellcode

Format
PE file format

(header, code, data,
etc.)

Code only

Load address Specified at PE
header N/A

API address PE loader will
resolve API address N/A

Shellcode has some routines
to retrieve these addresses

Copyright©2015 JPCERT/CC All rights reserved.39

Basic Process of Shellcode

Specify
its base
address

Decode
its main

part
Get API

addresses

Drop
malware
• Stored in

the file
• Download

Execute
malware

Copyright©2015 JPCERT/CC All rights reserved.40

TIB & PEB

• Also called "Thread Environment Block (TEB)"
• Contains thread related information

• Thread context, PEB, etc.

Thread Information Block (TIB)

• Contains process related information
• PID, Loaded modules, etc.

Process Environment Block (PEB)

Used by shellcode to resolve API address

Copyright©2015 JPCERT/CC All rights reserved.41

TIB in Segment Register
FS register points to TIB

Copyright©2015 JPCERT/CC All rights reserved.42

Loading to IDA
Load as a 32bit code
Recommendation
—Change loading offset to 0x00010000 to avoid

analysis failure (in some cases)

Copyright©2015 JPCERT/CC All rights reserved.43

Shellcode Analysis

LET'S ANALYZE

Copyright©2015 JPCERT/CC All rights reserved.44

Analysis Target
Shellcode cropped from memory dump

Memory

Stack

Application

nop
Shellcode

nop
Shellcode

nop
Shellcode

bonus_sc.idb

Copyright©2015 JPCERT/CC All rights reserved.45

Point 1. Getting Base Address
To calculate relative address

Jump to next instruction
• call $+5

Get return address from
stack
• pop ebp

Calculate base address
• sub ebp, 0Dh

push return
address

Copyright©2015 JPCERT/CC All rights reserved.46

Point 2. GetProcAddress
Step 1: getting base address of kernel32.dll

PEB
• fs:[eax+30h]

Ldr
• [eax + 0Ch]

InInitializationOrderModuleLi
st
• [eax+1Ch]

Copyright©2015 JPCERT/CC All rights reserved.47

Point 2. GetProcAddress
Step 2: parsing DLL file to get API address

MZ NT Optional
Header

Data
Directories

Export
Directory

+3Ch
+3Ch
+78h

Stored address of
Export Directory at the

head

Copyright©2015 JPCERT/CC All rights reserved.48

Point 2. GetProcAddress
2 methods to obtain API addresses

• Parse DLL file every time
• Compare export function name with

API to use

Get all API address manually

• Use GetProcAddress after getting
address of GetProcAddress

Use GetProcAddress

Copyright©2015 JPCERT/CC All rights reserved.49

FYI. API Hashing
Recent shellcode use hash value of API name for
anti-virus/analysis

See: http://blog.fireeye.com/files/win32_api_hash_table-2.html

http://blog.fireeye.com/files/win32_api_hash_table-2.html

Discussion

Questions?

	Understanding�Malware
	Notice
	Agenda
	Objectives of This Session
	Windows�Malware Analysis
	(recap) Malware Analysis Flow
	(recap) Analysis Process Comparison
	(recap) Static Analysis Tools
	Basic Knowledge
	PE (Portable Executable) File Format
	EXE & DLL
	Process & Virtual Memory
	Finding Main Function
	Important Points
	Let's Analyze�Simple HTTP Bot
	Analysis Target
	Exercise 1. Malware Analysis
	Point 1. AutoRun Function
	Point 2. Hiding API name
	Point 3. HTTP Communication
	Point 4. Encoding (Obfuscation)
	Point 4. Encoding (Obfuscation)
	Point 5. Bot command
	Exercise 1. Malware Analysis
	Let's Analyze�Banking Trojan
	Analysis Target
	Exercise 2. Malware Analysis
	Point 1. Dropping Files
	Point 1. Dropping Files
	Point 2. Position Independent Data Addressing
	Point 3. Anti Runtime Analysis
	Point 4. Code Injection
	Point 5. API Hooking
	Exercise 2. Malware Analysis
	Bonus:�Shellcode Analysis
	Basic Knowledge
	(recap) Exploiting Vulnerability
	What Shellcode is
	Comparison With Executable File
	Basic Process of Shellcode
	TIB & PEB
	TIB in Segment Register
	Loading to IDA
	Let's Analyze
	Analysis Target
	Point 1. Getting Base Address
	Point 2. GetProcAddress
	Point 2. GetProcAddress
	Point 2. GetProcAddress
	FYI. API Hashing
	Discussion
	Questions?

		2015-09-08T11:48:35+0900
	Japan Computer Emergency Response Team Coordination Center

